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4 Scienti�c achievement ( According to Polish law: "

art. 16 ust. 2 ustawy z dnia 14 marca 2003 r. o

stopniach naukowych i tytule naukowym oraz o stop-

niach i tytule w zakresie sztuki (Dz. U. 2017 r. poz.

1789)".

4.1 Title of the scienti�c achievement

Group of publications: Theoretical description of phenomena caused by quantum and

thermal �uctuation in ultracold atom systems

4.2 List of publications of the scienti�c achievement

In 2017 I changed my surname from 'Zi«' to 'Zin'. That is why in most of the below

publications surname 'Zi«' is present.

[h1] P. Zi«, B. Ole±, M. Trippenbach, K. Sacha, Second -order quantum phase transition

of a homogeneous Bose gas with attractive interactions, Phys. Rev. A 78, 023620

(2008).

[h2] P. Zi«, J. Chwede«czuk, B. Ole±, K. Sacha, M. Trippenbach, Critical �uctuations

of an attractive Bose gas in a double-well potential, Euro Phys. Lett. 83, 64007

(2008).

[h3] P. Zi«, B. Ole±, K. Sacha, Quantum particle number �uctuations in a two-component

Bose gas in a double-well potential, Phys. Rev. A 84, 033614 (2011).

[h4] J. Chwede«czuk, P. Zi«, M. Trippenbach, A. Perrin, V. Leung, D. Boiron, C.I.

Westbrook, Pair correlations of scattered atoms from two colliding Bose-Einstein

Condensates: Perturbative Approach, Phys. Rev. A 78, 053605 (2008).

[h5] Paweª Zi« and Tomasz Wasak, Properties of atomic pairs produced in the collision

of Bose-Einstein condensates, Phys. Rev. A 97, 043620 (2018).

[h6] Paweª Zi« and Maciej Pylak, The in�uence of the interaction between quasiparti-

cles on parametric resonance in Bose-Einstein condensates, J. Phys. B 50, 085301

(2017).
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[h7] Maciej Pylak and Paweª Zin, In�uence of the interaction between quasiparticles on

parametric resonance in Bose-Einstein quasicondensates, Phys. Rev. A 98, 043603

(2018).

[h8] Paweª Zin, Maciej Pylak, Tomasz Wasak, Mariusz Gajda, Zbigniew Idziaszek, Quan-

tum Bose-Bose droplets at a dimensional crossover, Phys. Rev. A 98, 051603(R)

(2018).

[h9] Paweª Zin, Quantum dynamics of Bose-Fermi mixtures via the stochastic-wave-

function approach, Phys. Rev. A 98, 043608 (2018) .

5 Description of the scienti�c goal, achieved results and

applications

In the theoretical description of ultracold atomic gases one uses the description invented in

statistical physics. First we introduce approximate description using mean-�eld method.

It is an e�ective, most approximate description but the simplest one. In the atomic physics

it resembles the Hartree-Fock approximation, where we solve single electron Schrodinger

equation. There the interaction of the chosen electron with all the others is approximated

by the presence of additional potential - mean �eld potential. In the case of dilute gas

of bosons the description is even simpler. In such system the Bose-Einstein condensate

is present - most of the atoms occupy the same mode and are described by the single

particle wave-function. To describe the evolution of this single particle wave-function one

introduced nonlinear Schrodinger equation called Gross-Pitaevskii equation (GP). There

the interaction between the atoms is described by the nonlinear term. This equation

describes many phenomena observed in the ultracold dilute bosonic gases. On the other

hand there are a number of phenomena where such description turns out to be inade-

quate. Then, we say, that such phenomena are caused by the �uctuations. We divide the

�uctuation present in the system into thermal one, caused by the nonzero temperature,

and quantum �uctuations, present even in the ground state of the system. The series of

articles described below presents investigations of phenomena caused by above mentioned

�uctuations.

The works [h1]-[h3] present the investigations of quantum phase transitions. These

are phase transitions taking place at zero temperature where the transition is caused by

the change of one of the parameters of the system (for example atomic interaction). In

these works the �uctuation of the order parameter is determined while crossing the phase

transition.
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The works [h4]-[h7] are devoted to the study of correlated atomic pairs. These works

are divided into two parts. [h4] and [h5] are devoted to the study of properties of atoms

scattered in the collision of Bose-Einstein condensate, where as [h6] and [h7] concern

the properties of atomic pairs produced by the parametric resonance process. These

phenomena cannot be described within mean-�eld theory - one needs to take �uctuations

into account.

Another system which cannot be described by mean �eld theory is the subject of [h8].

There the system of quantum droplet was investigated. This existence and properties of

this droplet is due to quantum �uctuations. The last work of the presented series [h9]

describes the stochastic method used in investigation of properties of bose-fermi mixtures.

The goal of this method to describe above mentioned systems where the application of

the mean �eld method is inadequate.

5.1 Fluctuations in quantum phase transitions.

This series of works [h1]-[h3] descries quantum phase transitions. First two manuscripts

are connected with the phenomena of spontaneous symmetry breaking taking place in

the mean-�eld theory. It turns out, that the solution of the Gross-Pitaevskii equation,

which respects the symmetry of the trapping potential, breaks this symmetry when the

attractive atomic interaction exceeds the critical value. It is possible since GP equation

is a nonlinear equation and its stationary solution do not need to respect the symmetry

of the trapping potential. It happens in the case of two symmetric wells potential, where

for small attractive interaction the atoms equally populate both wells. However for larger

interaction the atoms tend to gather in one, randomly chosen, well. In the described

system one can introduce the order parameter as the population di�erence between both

wells. Than the mean �eld theory predicts the value of the order parameter to be zero,

for interaction smaller than the critical value. However after exceeding the critical value

the order parameter starts to be nonzero. The important theoretical question is how to

describe such system in full quantum treatment. Derivation of such description is the sub-

ject of work [h1]. For the system described above the approximate two mode description

was applied. For many systems such description is fully justi�ed. In such case the Hilbert

space is spanned by the Fock states |n1, n2〉 where n1 and n2 denote the number of atoms

in the �rst and second well respectively. If one additionally uses the number conservation

i.e. n1 + n2 = N , then such states are described by the number di�erence n = n1 − n2.

Therefore the most general quantum state takes the form |ψ〉 =
∑N/2

n=−N/2 cn|
N+n

2
, N−n

2
〉.

When N is of the order of thousands or more, to a good approximation, n can be treated

as a continuous parameter. Using such approximation in [h1] the Schrodinger equation
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for probability amplitude cn (which can be called wave-function) was derived. It turns

out that the derived equation has the form of Schrodinger equation of a �ctitious particle

in a one dimensional space, where the spatial coordinate is a continuous parameter n.

In this equation the kinetic energy operator is equal to JN
2

d2

dn2 where one notice that the

e�ective ~2/m is equal to JN where J is the parameter describing the tunneling between

the two wells. The external potential that is present in the above mentioned Schrodinger

equation is the function of the interaction parameter. Important results of the paper is

that the external potential turns out to have the shape of a Landau potential appearing

in the phenomenological theory of phase transitions. There, however, it was introduced

as a phenomenological description of the phase transition, and here we derive such poten-

tial from �rst principles (full many body quantum treatment). This potential has single

minimum for n = n1 − n2 = 0 for the values of the interaction parameter smaller than

the critical value. On the other hand the potential has two symmetric minima n = ±n0

for n0 > 0 for interaction parameter above the critical value. It is important that the

potential has quadratic expansion around the minimum for every value except the critical

one, where it has a quartic form. Additionally it turns out that the potential is equal to

the mean-�eld energy, thus the minima of the potential are the stationary solutions of

the mean-�eld theory. The following two system properties follow from the shape of the

potential

• the quantum �uctuations are the largest at the critical point

• in the case of two minima, the many body wave-function of the system |Ψ〉 in a good

approximation becomes a superposition of the solutions of the mean-�eld theory i.e.

|Ψ〉 = 1√
2

(
|ψ1〉⊗N + |ψ2〉⊗N

)
where |ψ1,2〉⊗N denotes the state of N atoms occupying

the same mode described by the single particle wave-functions |ψ1,2〉. These wave

functions |ψ1,2〉 are the solutions of the mean-�eld theory which break the symmetry

of the system - |ψ1,2〉 denotes the solution with the maximum located at �rst and

second well respectively.

In order to check how universal are the observed phenomena, another system that

posses spontaneous symmetry breaking solutions of the mean-�eld theory, was investi-

gated. This system was a homogeneous, one dimensional bose gas in a �nite box with

periodic boundary conditions, with the attractive interaction between atoms. As in the

previous system, the solution of the GP equation is homogeneous below the critical value

of the interaction parameter. After crossing that value, the solution becomes nonuniform

with the maximum located in randomly chosen position. When inspecting many body

quantum theory, one may �nd that a three mode approximation of the above system
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turns out to be a good one. The three mentioned modes correspond to the wave-vector

equal to zero and plus and minus the smallest possible value of the wave-vector. Using

the conservation of total particle number one may additionally eliminate the operators of

the k = 0 mode, e�ectively obtaining a two mode system. Next step was to introduce the

position representation of the annihilation and creation operators of the two modes, i.e.

â =
1√
2

(
∂

∂x
+ x

)
=
x̂+ ip̂√

2
â† =

1√
2

(
− ∂

∂x
+ x

)
.

As a result the Hamiltonian was given by an operator on a two dimensional space. It

turned out, that to a good approximation, the Hamiltonian reduces to the one of a �cti-

tious particle in a two dimensional space subject to an external potential. This potential

turns out to be the energy of the mean-�eld theory. One needs to add, that each point

in a two dimensional space correspond to a position of a maximum of a solution breaking

the symmetry of the system, and additionally gave the information about how much the

symmetry was broken. The center of the coordinate system corresponds to a uniform

solution that does not breaks the symmetry of the system. The external potential de-

pends on the interaction between the atoms. For the interaction smaller and equal to

the critical one, the potential has one minimum at the center of the coordinate system.

For larger interactions the potential has a shape of a Mexican hat with the minimum

given by the valley of this hat. The degeneration of the minimum corresponds to the

degeneration of the solution that breaks the symmetry of the system - the position of the

maximum of such solution is a continuous parameter. Additionally, before, the expansion

around the minimum is given by the quadratic form apart from the critical point, where

is is given by the quartic form. If one takes the order parameter as some measure of the

symmetry breaking, than from what is written above one �nds, that the largest �uctua-

tions of the order parameter are at the critical point. Additionally the many body wave

function of the system |Ψ〉 turns out to be given by the superposition of the solutions of

the mean-�eld theory i.e. |Ψ〉 ∝
∫ L

0
dx |ψx〉⊗N , where L denotes the length of the system

and ψx is single particle wave-function that breaks the symmetry and has a maximum at

x. The results described above constitute the manuscript [h2]. The phenomena observed

here are analogous as the one seen in the previous system. In these two cases, when the

mean-�eld theory signalized second order phase transition, the many body theory gave

the description analogous to the phenomenological Landau theory.

As written above, the �uctuations of the order parameter turned out to be be the

largest at the critical point. However they were relatively small. Still it was interesting

to �nd a system having large quantum �uctuations. A system, that potentially could

have such property, is a two bose gases mixture in double well symmetric potential.
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Such a system can be approximately described by two spatial modes, which in the case

of two di�erent gases gives four modes. Therefore a single quantum state has a form

|na, nb;N − na, N − nb〉, where na, nb denotes the number of atoms in the �rst well of a

a and b species respectively, while N − na and N − nb are this numbers in the second

well. Here for simplicity the same total number of atoms of both species, equal to N ,

are assumed. In the system we deal with three independent constants Uaa, Ubb and Uab

describing the interaction between the atoms. Here one notice the interaction between

the species a-a, b-b and a-b. In the situation Uaa = Ubb = Uab one �nds interesting case of

energy of interaction degeneration. Namely the interaction energy has the same value for

each of the states of the form |na, nb;N − na, N − nb〉 where na + nb = N . It means that

the state has the same interaction energy for the value of na changing from 0 to N (on the

same time nb has to change from N to 0). Such a situation gives maximal �uctuations of

each of the bose component. In the Hamiltonian, apart from interaction energy, one �nds

a tunneling term. The investigation of how this term in�uences such large �uctuation was

the subject of manuscript [h3]. There the conditions for the existence of the described

�uctuations are presented.

5.2 Description of creation and properties of correlated atomic

pairs

One of the directions in research in physics is the formation and manipulation of entangled

quantum states. It is known, that in interferometry the use of entanglement improves

the sensitivity of the measurement of the certain quantities. An example is the use of

entangled states to improve the sensitivity of the measurment of gravitational waves in

the interferometer located in Hanover. The increase of the sensitivity of the measurement

helped to detect this tiny �uctuations of spacetime. The creation and manipulation of

entangled states is now the research goal of many experimental groups in cold atomic

physics. There are many systems and processes in which such states are generated. In

the research presented below, two of such processes, in which states of de�nite number of

pairs of atoms are created, are described. In extreme case we deal with single atomic pair.

In the �eld of quantum optics the state of single pair of photons, were created many years

ago, and used in many experiments, showing entanglement of such state. For example

in the Hong-Ou-Mandel e�ect or breaking the Bell inequalities. The obvious idea is to

perform such experiments using atoms instead of photons. This is the way undertaken,

among other also by Chris Westbrook group from Institute d'Optique located near Paris.

They have observed the Hong-Ou-Mandel e�ect [1] and made a two atom, four mode

interferometer, that is to be used in the breaking Bell inequalities experiment [2]. One
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of the processes that they used in creation of atomic pair state is the collision of Bose-

Einstein condensate [3].

5.2.1 Properties of atomic pairs generated in collision of Bose-Einstein con-

densates

In this case in counter propagating clouds the collisions of atoms takes place, which leads

to scattering of atomic pairs. Due to the energy and momentum conservation, the two

atoms constituting a pair have opposite velocities. However, due to the s-wave scattering,

the direction of single velocity is random. The experimental measurements performed for

such scattered atoms, showed breaking of Cauchy-Schwartz inequality, which proves the

existence of entanglement in this system [4]. The longstanding goal of such experiments is

to use such quantum state in breaking Bell inequalities. However, before such experiment

is to be performed, there is a need of conducting simpler measurements, which check

if the quantum state present in the experiment is that what is expected. For example

it is necessary to check if indeed the correlated pairs are present. Another example is

the measurement of two particle correlation function and comparison of the experimental

results against theoretical calculations. It is a very important test of the experimental

equipment and in particular the single atom detector, which are essential in breaking

the Bell inequalities experiment. The lack of agreement between experiment and theory

may suggest problems with the experimental setup. The experimentalists need agreement

between experimental measurements and theoretical predictions of the two particle cor-

relation function, as an argument that the experimental conditions are well controlled. It

is necessary before conducting much more di�cult breaking Bell inequalities experiment.

Because of the above, the need of theoretical investigations of properties of atoms scat-

tered in collisions of Bose-Einstein condensate occurred. Investigations of this properties

is the content of works [h4] and [h5].

In the case of system under investigation there exact solution of the many-body

Schrodinger equation is not known. Therefore it is necessary to use approximate methods.

Most of the experiments of Bose-Einstein condensate collisions are performed in so called

collision-less regime. In such case the probability of atom scattering from colliding cloud

is much smaller than unity. This enables of neglecting secondary collisions (collisions of

scattered atoms with the atoms of the condensates) and permits the use of Bogoliubov

method. In this method, the colliding Bose-Einstein condensates are described by single

particle wave-function (all the atoms are described by the same wave-function) satisfying
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Gross-Pitaevskii equation

i~∂tψ(r, t) =

(
− ~2

2m
4+ g|ψ(r, t)|2

)
ψ(r, t). (1)

Thus this is the description within mean-�eld theory. The scattered atoms halo are

described by �eld operator δ̂(r, t) satisfying linear Heisenberg equation

i~∂tδ̂(r, t) = H0(r, t)δ̂(r, t) +B(r, t)δ̂†(r, t) (2)

where

H0(r, t) = − ~2

2m
4+ 2g|ψ(r, t)|2, (3)

B(r, t) = gψ2(r, t). (4)

The nonlinear terms in Heisenberg equation (not present above), describe secondary col-

lisions. As we restricted the investigations to systems in which this processes are very

unlikely to happen, these nonlinear terms are neglected. The conditions of many ex-

periments additionally allow for perturbative solution of the Heisenberg equation (in the

lowest order of perturbation). This enables to obtain the analytic expressions for such

observables as single particle density and two particle correlation function of the scattered

atoms. The formulas for these expressions are given as integrals over space and time of the

integrand, made of time dependent condensate wave-function and single particle propaga-

tors of the H0 Hamiltonian. They described the scattered atoms subject to the potential

generated by the condensate. This potential describes the interaction between the scat-

tered atom and the atoms of the condensate. The analytic form of above mentioned single

particle propagator is not known. The same happens with the condensate wave-function

where the analytic solution of the colliding condensates is, in general, not known. Thus

in order to analytically calculate two particle correlation function one needs to perform

approximations. The simplest idea is to neglect the nonlinear term in the GP equation

and, in the same time, neglect the potential 2g|ψ|2 in the single particle propagator (so

approximating the H0 Hamiltonian by the kinetic energy operator). Then the GP equa-

tion and single particle propagator equation can be solved analytically. Thus, mentioned

above observables are given by analytical formulas. This enables evaluation of the two

particle correlation function. In work [h4] using the above approximations the calculation

of the two particle correlation function for the parameters of the experiment carried in

Palaseau near Paris, was performed. There are two parts of two particle correlation:

• opposite particle correlation (back to back). These are present because the atoms

are scattered in pairs of opposite velocities.
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• Correlation of velocities close to each other (local correlations). These are present

due to the fact, that we deal with bosons and in addition scattering of atoms is an

incoherent process. Because of that bunching e�ects takes place.

In [h4] the theoretical calculation were compared with experimental results. Good com-

parison was obtained for opposite particle correlation. In the case of local correlations the

signi�cant di�erences were observed between the experiment and the theory. However as

written above the theoretical calculations were perfomed upon neglecting the interaction

between condensate atoms, and between condensate atoms and scattered atoms. The im-

pact of the neglected interactions on the two particle correlation function was not known.

Thus the obtained comparison did not gave much. It was necessary to take into account

the neglected interaction.

This was the central point of the work [h5]. In the case of single particle propagator,

it was crucial to use the fact, that the characteristic size of the potential coming from

the condensate atoms, was much larger that the wavelength of the scattered atoms. This

enabled the use of semiclassical approximation, which gave the analytical (approximated)

form of the single particle propagator. This enabled to derive the analytical expressions

for the two particle correlation function and other observables of interest. All these ex-

pressions contained time dependent condensate wave function. Thus to calculate the two

particle correlation function the GP equation needed to be solved. As written above, the

exact solution of the GP equation in the case of collisions between condensates, are not

known. Thus one had two possibilities. One could, for a single given set of parameters,

solve GP equation numerically and then, for such parameters, calculate numerically the

quantities of interest. Alternatively, one could solve GP equation approximately using

variational method - then the solution would be analytical and one would obtain a quan-

tities of interest for wide range of parameters. In work [h5] the second possibility was

chosen. Having analytical form of the condensate wave-function a two particle correlation

function for a wide range of parameters was investigated. It was important to �nd a

maximum and widths of this correlation function as a function of experimental parame-

ters. This information are crucial for planning breaking Bells inequality experiments. In

[h6] the above mentioned properties of the correlation function were obtained in a form

showing explicit dependence on experimental parameters. Additionally in this work a

semiclassical limit of the above system was investigated. The observables, suggested to

have semiclassical limit, were single particle density and opposite part of two particle cor-

relation function. The physics standing behind these observables are a classical process

of binary atom collisions. To �nd this quantities it was enough to use simple classical

model, where colliding clouds were described by single particle phase space distribution.
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In [h6] it was shown that the best agreement between quantum and semiclassical model

were obtained, if the single particle phase space distribution was chosen as the Wigner

function calculated using condensate wave-function. This agreement between the models

turned out to be excellent for a wide range of experimental parameters. On the other hand

the agreement between two models in the case of opposite part of two particle correlation

function turned out to be only partly satisfactory.

The two particle correlation function depends on positions of two atoms. The best

parametrization of this function is the sum and di�erence of atoms position. In the

opposite correlation case the di�erence of positions is much larger than its sum. This

is because the positions have nearly opposite vectors. It turns out that the correlation

function averaged over position di�erence (than it depends only on sum of positions)

has the same form, as this quantity obtained from the semiclassical model, for a wide

range of experimental parameters. On the other it was shown in [h6] that in the case of

positions di�erence dependence (averaged over sum of positions) the quantum model gives,

in general, di�erent results than the semiclassical one. This shows a quantum character

the position di�erence dependence. The analysis of analytical expressions gives some

explanation of this observation. The opposite part of two particle correlation function

is give by the product of two temporal integrals. On the other hand the semiclassical

mode has only one temporal integral - this is a sum of scatterings coming from di�erent

moments of time. It turns out, that averaging two particle correlation function over

position di�erence or obtaining single particle density, leads e�ectively to changing two

temporal integrals into single one. This, however does not prove, but gives a chance,

that the discussed quantities can have semiclassical counterparts. Averaging two particle

correlation function over sum of positions still leaves two temporal integrals, which shows

that there is no possibility of having semiclassical counterpart.

The situation gets di�erent in the case of local part of two particle correlation function.

Within Bogoliubov method this function is equal to the modulus squared of the single

particle correlation function. So the quantity to be calculate is single particle correlation

function G(1). This function may be represented as fourier transform of scattered atoms

single particle Wigner function:

G(1)

(
r +

∆r

2
, r− ∆r

2
, T

)
=

∫
dk e−ip∆r/~W (r,p;T )

where p denotes atomic momenta and T time of measurement. Using a semiclassical

model one obtains the single particle phase space density of scattered particles. Such

phase space density can be obtained using Boltzmann like model, where the colliding

clouds are described by single particle phase space density. Equating, the above phase
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space density of scattered particle with the Wigner function present in the above formula,

enables to calculate single particle correlation function, and as a consequence, local part

of two particle correlation function, using a semiclassical model. The method described

above gives a possibility of calculating local part of the two particle correlation function

using a semiclassical model. Looking at the above formula, one clearly sees that this

calculation is not purely semiclassical. In the above formula one notices the presence of

the Planck constant, However, in this case, one only uses de Broglie'a formula, which

gives the relation between momenta and wavelength of the moving atoms.

Additionally the Wigner function present in the above formula was derived within

many body quantum model. It turned out, that for wide range of parameters, the Wigner

function derived from many body quantum model was almost the same as the one derived

from semiclassical model described above. The results of, described above, investigations

were presented in large work [h6].

5.2.2 Description of atomic pairs properties generated via parametric reso-

nance process

For some purposes one needs atomic pairs with given direction of emission. One just needs

to know where and in what time the pair of atoms shall be present. In such case one

needs to use another process than collisions of Bose-Einstein condensates ( where atoms

are scattered in random direction). One of such processes was realized experimentally in

prof. Westbrook group in Palaseiau [5]. In this experiment the ultracold cloud of atoms

in cigar shaped trap was obtained. Than, the atom trapping force was periodically varied

in time. Looking at this system as quasi-one dimensional, such periodic change causes

periodic temporal modulation of one-dimensional interaction constant. It turns out that

this causes emission of pair of atoms, with opposite velocities, along elongated direction

of trapped cloud. Additionally the energy of emitted atoms is directly connected to the

frequency of modulation of the atom trapping force. True to form in the experiment the

velocity correlated pairs of atoms were observed.

The above described process is a example of parametric resonance. One of the pa-

rameters of the system was changed periodically and pairs of atoms were generated, with

frequency (energy of atoms divided by Planck constant), being in resonance with fre-

quency of periodic changes. This process was investigated using Bogoliubov method. The

theoretical calculation predicted existence of entanglement in such system. The suggested

way of proving entanglement in such system was the measurement of so called number

number squeezing parameter. According to the predictions based on Bogoliubov method,

the value of number of number squeezing parameter should be below certain critical value,
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which would prove existence of entanglement in the system (this connection was proved in

work [o20]). Unfortunately, despite the expectations, the value of the number squeezing

parameter, turned out to be larger than the critical value. This mean, that the measure-

ment did not prove the existence of entanglement in the system.

In the Bogoliubov method part of the terms present in the Hamiltonian are being

neglected. These terms are responsible for the interaction between system quasi-particles

(Bogoliubov method de�nes and describes non-interacting quasi-particles). The observed

discrepancy between theoretical predictions and experimental measurements suggested,

important in�uence of the neglected Hamiltonian terms on the system properties. Thus it

was obvious to take into account the neglected interaction terms. As the system of interest

is out of equilibrium (the time dependent force acts on the system) the Keldysh method

was chosen as the suitable one. It is quite standard method of quantum �eld theory to

deal with nonequilibrium systems. Using certain approximation applied to the self energy

(which appears in the Dyson equation) the time dependent Dyson equation for the single

particle Green's function, was solved analytically. Additionally the higher order correla-

tion function were expressed using single particle Green's function. This enabled to �nd

analytical formulas for the quasiparticles population and number squeezing parameter as

a function of time. It turned out that the interaction between quasiparticles manifests

itself in the, mentioned above, expressions, through parameter called quasiparticle decay

constant. This parameter is an inverse of quasiparticle lifetime determined for equilibrium

state of the systems. On the other hand, the speed of quasiparticle generation is given

by single parameter (called ampli�cation parameter) present in the Bogoliubov method.

The results showed dramatic in�uence of the quasiparticle interaction on the increase of

quasiparticle population as well as the value of the number squeezing parameter. Gener-

ally, when the quasiparticle decay constant is larger than the ampli�cation constant, the

atomic pair production process is practically frozen - the increase of the pair population

in time is very small and tends to a constant at in�nite time. Additionally in this case

the value of the number squeezing parameter is usually above the critical value. All these

clearly shows that in such case the system is not an e�cient source of entangled atomic

pairs. The situation is di�erent in the other case. If the ampli�cation parameter is sig-

ni�cantly larger than the quasparticle decay constant, than the pair production process

is exponential in time, and the number squeezing parameter eventually, after some time,

drops below the critical value. In such case the system is an e�cient source of entangled

atomic pairs. The above described results are the content of work [h6].

As written above all these results were obtained within certain approximation of the

self energy function. This approximation is correct in the case of three dimensional
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systems. However, strictly speaking, it cannot be applied to one dimensional or quasi-

one dimensional systems. It means, that straightforward use of the above results to the

analysis of the experimental system is not well justi�ed.

The literature concerning the one dimensional systems, clearly showed, that the use of

Keldysh method in such case would be very challenging task. Thus to investigate this sys-

tem another method was chosen - it was classical �eld approximation. This method takes

into account thermal �uctuations, neglecting the quantum one. But it turned out, that

for experimental parameters the quantum �uctuations can be neglected, which justi�ed

the use of classical �eld approximation.

Using that numerical method for experimental parameters, the number squeezing pa-

rameter was calculated. It turned out that it value was signi�cantly larger than the

critical value, which was in agreement with experimental measurements. This results

clearly showed that the value of the number squeezing parameter measured experimen-

tally (larger than the critical value) was caused by the quasiparticle interaction. This

results are the content of [h7].

The works described above, clearly showed the necessity of taking into account the

quasiparticle interaction, while designing the source of entangled atomic pairs.

5.3 The description of the properties of quantum droplets.

The dilute, homogeneous, bose gas was the subject of extensive theoretical investigations.

In particular its ground state energy was analyzed. It was shown that the �rst two

terms in the ground state energy expansion depends only on the s-wave scattering length

of the interaction potential. The �rst term in this expansion is given by the mean-�eld

theory, where the energy density is proportional to the square of the density of the system

multiplied by the s-wave scattering length. The second term in the expansion, called Lee-

Huang-Yang (LHY) energy, is caused by the quantum �uctuation [6]. It is equal to the �rst

term multiplied by the attenuation parameter to the power two thirds. This parameter is

equal to the ratio of the scattering length to the mean inter-particle distance. In the case

of dilute gas this parameter is much smaller than unity, which means that the second term

in expansion is much smaller than the �rst one (that is why it is a correct expansion).

In most of the experiments carried so far and its theoretical explanations, the LHY term

was neglected, as it was usually much smaller than the mean-�eld energy.

This situation changed recently, due to the research conducted by Dymitr Petrov [6].

He was investigating the two bose gas mixture. There are three s-wave scattering lengths

in such a system: between two atoms of the �rst component, between two atoms of the

second component and between one atom of the �rst and second atom of the second
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component. In his investigations Petrov took two �rst lengths as positive and the third

one as negative. In such a con�guration the mean-�eld theory predicts two possibilities:

• gas �lls whole available space in the container uniformly - this happens when the

modulus of the negative scattering length is smaller than some critical value.

• the collapse of the mixture takes place - it happens in the opposite case as described

above.

Collapse means, that the solution of the mean-�eld equations tends towards larger local-

ization together with increase of the density to in�nity. In fact it means that the mean

�eld theory does not work any more.

Petrov showed, that in such case the LHY energy is positive. Additionally, he showed,

that the LHY energy grows faster with density increase, that the mean-�eld energy. Thus

the existence of the LHY energy causes the stabilization of the system - the collapse shall

not take place. Petrov showed that in such a case a localized cloud shall be formed, with

the density given by the properties of the LHY energy. An interesting state of the system

is formed. If one de�nes the gas state as the one in which the atoms �ll the whole available

space in the container, than in the above described case we do not deal with gas state.

Instead the atoms tend to localize in space with given constant density. When the number

of atom increases, the localized state enlarges keeping the same density. Of course it posses

also a �nite edge, where the density drops to zero on a �nite length. This properties usually

characterize the liquid state. Therefore this state was called quantum droplet state. The

adjective quantum appears because the droplet is formed due to quantum �uctuations.

One needs to add, that in such a state, the mean interparticle distance is still much larger

than the scattering lengths. Therefore we deal with weakly interacting system, where

the use of perturbative methods (for example Bogoliubov method) is fully justi�ed. The

described above droplets were observed in the experiment [7]

Soon after his �rst work D. Petrov published another one discussing similar systems in

two and one dimensional con�gurations [8]. It turned out, that the quantum droplets exist

there as well. In the experiment, the lower dimensional systems are obtained by tightly

squeezing the atoms with trapping forces in one or two directions. In his work Petrov

did not gave any condition how strong the squeezing has to be in order to obtain quasi-

low dimensional system. This problem became recently crucial, when the experimental

groups started to work on obtaining quantum droplets in lower dimensional systems. The

solution of such problem is the content of work [h8].

In this work the uniform system in a box of size Lx,Ly andLz z with periodic boundary

conditions was analyzed. In order to simulate the tight squeezing leading to two dimen-
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sional system the limit Lx, Ly →∞ was taken with Lz = L being �xed. Similar procedure

was adopted to simulate quasi-one dimensional system (Lx → ∞ and Ly, Lz = L being

constant). In the rest of the work the LHY energy term was calculated for such systems

in the critical point (just before the mean-�eld theory predicts collapse of the mixture).

At this point one deals with uniform system with two kinds of excitations: �rst are well

known Bogoliubov quasiparticles, second the quasiparticles w having spectrum being a

quadratic function of the quasiparticle momenta (identically as for non-interacting atoms).

It turned out that only �rst kind of quasiparticles contributes to the LHY energy. Addi-

tionally it was shown that it contributes in the same way as the single component bose

gas does. This showed a clear connection between the LHY energy of the mixture and

single component bose gas. There appeared one dimensionless parameter which was a

ration of of characteristic interaction energy per atom to the kinetic energy of the lowest

possible excitation in the squeezed direction. Characteristic energy of interaction was in

this case proportional to n1a11 + n2a22 where n1,2 is a density of �rst and second com-

ponent while a11,22 denotes the scattering length between two atoms of �rst and second

component respectively. In [h8] the dependence of the LHY energy as a function of this

dimensionless parameter was computed numerically. Additionally the analytical expan-

sion for small values of the above mentioned parameter was found. It enabled, using local

density approximation, for obtaining the density of the quantum droplet in an analyt-

ical formula. The relation between three dimensional and lower dimensional scattering

lengths, enabled for expressing this density as a function of lower dimensional quanti-

ties (lower dimensional scattering length and lower dimensional density). For very small

values of the dimensionless parameter the derived expressions for the quantum droplet

density turned out to be identical with the ones derived by Petrov in his work [8]. This

was expected because very tight squeezing should lead to lower-dimensional systems. But

it was surprising that in order to obtain lower dimensional systems the value of the di-

mensionless parameter needed to be very small - smaller than 3/100. Such a small value

shall be very hard to reach in the experiment. Additionally the work showed another

astonishing fact. For values of the parameter above 3/10 the LHY energy was practically

equal to the one given by the three dimensional formula. Naively thinking such behavior

was expected to happen for the values of the dimensionless parameter much larger than

unity. In such a case many of the "squeezed" modes are excited and the system acts as

being three dimensional. However in our case, when the value of the parameter is 3/10 it

is hard to speak about excitation of the �rst squeezed mode, and still the system adopts

a three dimensional value. This also shows how strong one needs to squeeze the atoms to

obtain any deviations from the three dimensional physics.
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5.4 The description of the bose-fermi mixture via stochastic method

approach

This research are the continuation of investigation described in works [o9]-[o12] undertaken

during the collaboration with P. Deuar for Institute of Physics Polish Academy of Sciences

in Warsaw. Peter Deuar was actively developing a Positive-P method [9]. It is a stochastic

method which exactly maps the many body Schrodinger equation on a set of classical �eld

di�erential equations possessing a stochastic noise. Such mapping is shown to take place

in the case of two particle interaction together with the presence of an external potential.

However Positive-P method has certain limitations of use. The quantum averages are

obtained as an averages many realizations of classical trajectories. Using the performed

simulations the uncertainty of the mean value of the given observable is being determined.

The value of this uncertainty depends on the number of realizations and goes to zero

with the number of realizations tending to in�nity. From the literature it is known that

this uncertainty becomes very large after some time. This time may be enlarged by

increasing the number of realizations, but in practice, it turns out that it does not give

substantial improvement. Thus the Positive-P method, in practice, gives the possibility of

investigating the evolution of the system up to some characteristic time. It is optimistic

that for many systems this time is long enough to observe and analyze interesting physical

phenomena. The above shows that the Positive-P method describes quantum �uctuations

and their impact on dynamics of the system.

The above described Positive-P method in its original formulation was made to de-

scribe the bosonic systems. It fundamentally makes use of bosonic coherent states proper-

ties. A short time ago new exact approach to map the many body Schrodinger equation on

to the set of stochastic equations was formulated. It was called stochastic wave-function

approach [10]. It is an analog of the Positive-P method ,which instead of bosonic coherent

states (which are states of inde�nite number of atoms), uses N-particle coherent states,

which are analog of coherent states but with conserved number of particles. Addition-

ally the stochastic wave-function approach has much simpler and shorter derivation of

stochastic equations than Positive-P method. Original formulation of stochastic wave-

function method was performed for bosons interacting via two particle potential. In the

case of fermions the analog of bosonic stochastic wave-function approach was formulated

few years after the bosonic one [11]. And the same as for bosons it was formulated for two

particle interaction potential. Such situation suggested the possibility of generalization

of such stochastic method to bose-fermi mixtures. The derivation of such method is the

content of [h9].

In this work the compilation of methods known for bosons and fermions was used.
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As written above, the bosonic method uses N-particle coherent states. It is the simplest

N-particle bosonic state, where all N particles of the system populate the same single

particle mode. General theorem states that any N-particle bosonic state can be rep-

resented as a superposition of un-normalized N-particle coherent states with identical,

positive probability amplitudes (the un-normalized state means, that its norm does not

need to be equal to unity). This theorem enables to introduce stochastic method. Let us

notice, that un-normalized N-particle coherent state is de�ned using un-normalized single

particle wave-function (classical �eld). The stochastic method is de�ned as an di�eren-

tial equation, for this single particle wave-function, with some additional stochastic noise.

Starting from N-particle coherent states, the stochastic method, transforms this state into

another N-particle coherent state (un-normalized). In each of the realizations it shall be

a di�erent �nal state, due to di�erent realizations of the stochastic noise. After many

realizations, the exact quantum state is approximated, by the sum of realizations of �nal

N-particle coherent states divided by the number of realizations. In the above described

way, the stochastic wave-function method for bosons is introduced.

It was not written above, how the stochastic equations are obtained and how it is

proved that the above described procedure is a correct one i.e. that the above described

sum of N-particle coherent states tens to true quantum state wit the number of realiza-

tions tending to in�nity. There the crucial fact is that the quantum evolution under single

particle operators of N-particle coherent states transforms, N-particle coherent state into

another state of the same form. If one would evolve N-particle coherent state with two

body operators then the result would not be a N-particle coherent state but more complex

state. In work [10] it was shown that the evolution operator exp(−iÂ2∆t) where Â2 is

a two particle operator can be written as a sum of evolutions under single particle oper-

ator, i.e. exp(−iÂ2∆t) = limM→∞
1
M

∑M
j=1 exp(−iÂ1,j∆t) where Â1,j is a single particle

operator. The above mentioned operator Â1,j has stochastic noise inside. As a result we

have

exp(−iÂ2∆t)|ψ〉N = lim
M→∞

1

M

M∑
j=1

exp(−iÂ1,j∆t)|ψ〉N = lim
M→∞

1

M

M∑
j=1

|ψj〉N

where |ψj〉N = exp(−iÂ1,j∆t)|ψ〉N . In the above the action of the operator exp(−iÂ2∆t)

on N-particle coherent state |ψ〉N is represented as a sum of N-coherent states |ψj〉N .
The fermionic stochastic wave-function approach is introduces in an analogous way.

Instead of bosonic N-particle coherent states a N-particle Slater state [11] is used. A

Slater state is the simplest fermionic N-particle states, which is a Slater determinant of

N orthogonal single particle wave-functions. Just as in the case of bosons, the general

theorem states, that every N-particle fermionic state can be represented as a superpo-
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sition of un-normalized N-particle Slater states with constant and positive probability

amplitude. The fermionic stochastic method introduces stochastic equations evolving

N-particle Slater states. This reduces to evolution of N un-normalized single particle

wave-functions. As written before, such equations were derived in the case of two particle

interaction.

Making use of the above results, in the work [h9] which deals with bose-fermi mixtures

the state being a product of N1-particle coherent state and N2-particle Slater state was

introduced (in this system one deals with N1 bosons and N2 fermions). In [h9] a successful

decomposition of evolution operator exp(−iÂn∆t) as a sum of single particle evolutions

exp(−iÂ1,j∆t) was made. Here Ân is a sum of operator describing any two particle

interaction between atoms, and operator describing higher than two particle interaction

of special form. Additionally Â1,j denotes a single particle operator possessing stochastic

noise. Using that representation as stochastic equations for single particle wave-function

de�ning N1-particle coherent state and N2 single particle wave-functions de�ning N2-

particle Slater state were derived. In this way a stochastic wave-function approach was

generalized to bose-fermi mixtures and higher than two particle interaction.

6 Description of other scienti�c achievements

6.1 Correlation of atoms scattered in the collisions of Bose-Einstein

condensates

These are the investigations undertaken before works [h4],[h5]. There the investigation of

atoms scattered in the collisions of spherical Bose-Einstein condensates was considered.

The main goal of this investigation was the analysis of transition between the regime where

the spontaneous process dominates, to a regime of bosonic enhancement domination. In

the work [o1] the numerical calculation illustrating this transition were carried. In [o2]

the analytical calculation of this passage were presented.

[o1] P. Zi«, J. Chwede«czuk, A. Perez, K. Rz¡»ewski, M. Trippenbach, Quantum multi-

mode model of elastic scattering from Bose Einstein condensates, Phys. Rev. Lett

94, 200401 (2005).

[o2] P. Zi«, J. Chwede«czuk, M. Trippenbach, Elastic scattering losses from colliding

Bose-Einstein condensates, Phys. Rev. A 73, 033602 (2006).

19



Paweª Zin Attachment nr 3 (Academic achievement, English version)

6.2 The simulation of single realization of many body quantum

system

This series of works is devoted to the study of the single simultaneous measurement of

positions of all the atoms of the system. According to the laws of quantum mechanics,

the modulus square of the many-body wavefunction gives the probability density of the

measurement of positions of all the atoms. Of course these positions can take very di�erent

values depending on the draw. But in case of many quantum states it was expected

that the result of typical measurement has certain properties. This was the case taking

place in [o3]. There the atoms scattered in the collision of Bose-Einstein condensate

were investigated. The parameters of the system were chosen such that the scattering

was dominated by the bosonic stimulation e�ects. Then the naive picture of scattering

looks in the following way. First pair of atoms is scattered with equal probability in all

spatial directions (this is because the s-wave scattering). After that the probability of

scattering of next pair to region where the �rst pair was scattered is magni�ed due to

the presence of bosonic enhancement e�ect. As the probability of scattering due to the

bosonic stimulation e�ect is proportional to the population of a given quantum state, so

the probability that the third pair is scattered in the same place as the two others, is

even larger. As a result one expects highly populated regions in space and others weakly

populated. These regions should appear in pairs of opposite velocities as the atoms are

scattered in such way.

The crucial technical issue of solving such theoretical problem is to perform a single

draw from such many dimensional (3N dimensional where N si the number of atoms)

probability density. As N is a large number thus the number of dimensions is enormous.

In [o3] an approximate method (suitable for the considered quantum state) of performing

a single draw was developed and presented. It turned out that a density of atoms in a

typical random draw looks as it was predicted above, using a naive model - one observes

pairs of spikes of atoms.

In work [o4] another quantum state was investigated. It was a state |N,N〉 where
exactly N atoms populates each of the two modes present. These modes can be for

example two plane waves with opposite sign of single wavevector i.e. ±k. One clearly sees
here that we deal with the interference of two Fock states. If instead of two Fock states one

would deal with two coherent states than on the screen one would see interference fringes.

The position of central fringe is given by the di�erent of phases of two coherent states. In

the case of Fock states, the phases are inde�nite. Thinking naively in typical realization

one would expect to have random phase di�erence, which would give random central peak

position. In [12] it was shown, that the result of typical realization of measurement of
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all atomic positions gives interference fringes with random central peak position - so it

is as it was expected. This result was based on a numerically performed, random draw

from multidimensional probability density performed in a smart way. The goal of the

investigations undertaken in [o4] was to show the above described property of typical

realization in an analytic way. This goal was obtained and it is the content of manuscript

[o4].

[o3] J. Chwede«czuk, P. Zi«, K. Rz¡»ewski, M. Trippenbach, Simulation of a single

collision of two Bose-Einstein condensates, Phys Rev. Lett 97, 170404 (2006).

[o4] A. Dragan, P. Zi«, Interference of Fock states in a single measurement, Phys. Rev.

A 76, 042124 (2007).

6.3 Description of the ultracold dilute bosonic gas using mean-

�eld theory

The works described here concern the investigations of the ultracold, dilute bosonic gas

using mean-�eld theory, that is GP equation. The works [o5] and [o6] were devoted to

the study of analytical solutions of the GP equation in the case of symmetric double well

external potential. The considered system war one dimensional with attractive (work

[o5]) and repulsive (work [o6]) atom interaction. These works were mainly devoted to the

solutions of the GP equation which spontaneously break the symmetry of the external

potential. In [o6], additionally, the dynamics of the system was analyzed within variational

method. The solutions, which spontaneously break the symmetry, were considered also

in works [o7] and [o8]. In [o7] the two dimensional system was considered, in which the

interaction parameter was function of one of the coordinates - it was equal to zero apart

from two parallel stripes. It turned out, that in such a system, the localized solutions

exists (analogous to solitons) which break the symmetry of the system. Similar system

was considered in [o8] where the interaction parameter was constant, but the external

potential depended on one of the coordinates - it had a shape of symmetric double well.

In two dimensional depedence the potential has a shape of two parallel channels. It turned

out that in such system, solutions which break the symmetry exist. In addition in this

work, the collision of such localized solutions were analyzed.

[o5] P. Zi«, E. Infeld, M. Matuszewski, G. Rowlands, M. Trippenbach,Method for obtain-

ing exact solutions of the nonlinear Schrodinger equation for a double-square-well

potential, Phys. Rev. A 73, 022105 (2006).
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[o6] E. Infeld, P. Zi«, J. Gocaªek, M. Trippenbach, Statics and dynamics of Bose-Einstein

condensates in double square well potentials, Phys. Rev. E 74, 026610 (2006).

[o7] N.V. Hung, P. Zi«, M. Trippenbach, B.A. Malomed, Two - dimensional solitons in

media with the stripe - shaped nonlinearity modulation, Phys. Rev. E 82, 046602

(2010).

[o8] N.V. Hung, P. Zi«, E. Infeld, M. Trippenbach, Symmetry breaking in the collisions

of double channel BEC solitons, Phys. D 269, 37 (2014)

6.4 Description of atoms scattered in the collisions of Bose-Einstein

condensates via stochastic methods.

This series of publication was connected with the use of stochastic methods in investi-

gations of properties of atoms scattered in the collisions of Bose-Einstein condensates.

There exist, described in the literature, stochastic method using so called Positive-P rep-

resentation. There any quantum state can be represented as real and positive probability

density in certain space. Additionally one my show, that in the case of bosons interacting

via two body potential , the Schrodinger equation can be exactly mapped onto set of

stochastic equation. However it happens that the derived equations are highly unstable,

which causes the simulations being hard to undertake.

As written before, in many cases it is enough to use Bogoliubov method, in the de-

scription of atoms scattered from colliding Bose-Einstein condensates. Due to that fact,

the natural idea was to use Positive-P method in the Bogoliubov description. Work [o9]

was devoted to this problem. In this work the stochastic equation within Bogoliubov

method were derived and used in the calculation of the process of atoms scattering. It

was shown that the equations are much more stable and they lead to solutions which

correctly describe the system. In the subsequent work [o10] the impact of the mean-�eld

present in the GP and Heisenberg equations for the �eld operator, was investigated. In

this work it was inspected what impact this two terms have on the mean velocity of scat-

tered atoms in the collisions of spherical. This work is closely related to [o11] in which the

mean-velocity of atoms scattered in the collisions of highly elongated condensates, with

collision velocity having direction perpendicular to the long axis of the cloud. This work

is written together with the experimental group and deals with the results of the exper-

iment. There it was found that the shape of density of scattered atoms (in the velocity

space) has, instead of expected spherical distribution, an ellipsoidal one. According to

theoretical �ndings this sphere deformation was caused by the, mentioned above, mean

�eld terms. In the next work [o12] the entanglement present in the quantum state of
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scattered atoms, was investigated. It was shown that the best conditions for obtaining

entanglement are present, when the atoms are scattered into localized regions, which is

possible in the bosonic enhancement regime.

[o9] P. Deuar, J. Chwede«czuk, M. Trippenbach, P. Zi«, Bogoliubov dynamics of con-

densate collisions using the positive-P representation, Phys. Rev. A 83, 063625

(2011).

[o10] P. Deuar, P. Zi«, J. Chwede«czuk, M. Trippenbach, Mean �eld e�ects on the scat-

tered atoms in condensate collisions, Eur. Phys. J. D 65, 19 (2011).

[o11] V. Krachmalnico�, J.-C. Jaskula, M. Bonneau, V. Leung, G. B. Partridge, D. Bo-

iron, C. I. Westbrook, P. Deuar, P. Zi«, M. Trippenbach, and K. V. Kheruntsyan,

Spontaneous four wave mixing of de Broglie waves: beyond optics, Phys. Rev. Lett.

104, 150402 (2010).

[o12] P. Deuar, T. Wasak, P. Zi«, J. Chwedenczuk, M. Trippenbach, Tradeo�s for number

squeezing in collisions of Bose-Einstein condensates, Phys. Rev. A 88, 013617

(2013).

6.5 Works on di�erent subjects

Below the works are described, each of which describes di�erent subject.

In [o13] the problem of the decay of Bose-Einstein condensate was considered. Such

decay is due to di�erent processes. One of such process is the collision of the condensate

atoms with the 'hot' and fast atoms being in the vacuum chamber. Such atoms, present

due to the �nite pressure in the chamber, are not trapped. They collide with the walls

of the chamber, and have room temperature. Thus, they are very fast, with respect to

the condensate atoms. The collision of such atom with the condensate atom causes the

latter, to leave the condensate. In [o13] the condensate with large thermal cloud was

considered. It was shown, that the decay of the thermal cloud (due to the same processes

as the condensate decay) lead to another process of the condensate decay - the transfer

of atoms from the condensate to the thermal cloud. The results of this theoretical paper

were veri�ed experimentally few years after publishing this work, in the experiment [13].

In [o14] the classical system of two interacting atoms, placed in the rotating asymmetric

harmonic trap, was considered. It was shown that, for some rotation frequencies and lack

of interaction between atoms, the distance between the atoms grows exponentially with

time. On the other hand, when the repulsive interaction are present, the interatomic

distance stays rather constant.
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In [o15] the two particle correlation function, in the ground state of dilute bose gas,

was considered. In this work it was calculated in the case of helium atoms being in the

metastable state.

In the work [o16] the system of relativistic interacting bosons was considered. It was

described within classical �elds approximation. This approximation enables to describe

the system possessing Bose-Einstein condensate at nonzero temperature. In [o16] many

properties of this system were found, for example excitation spectrum as a function of

temperature of the system.

In [o17] the rigorous mathematical derivation of the Hartree-Fock-Bogoliubov method

was considered. Additionally, in this work, few hypothesis concerning the excitation

spectrum of dilute, interacting bose gas, were stated.

In [o18] the evolution of the condensate subject to double well external potential, was

considered. In particular the phenomena of oscillation revivals was investigated. It was

shown, that the phenomena of revivals of oscillation can be obtained using a semiclassical

model.

In [o19] the Raman scattering from Bose-Einstein quasicondensate was considered.

There, the impact of the temperature on the width of the density and two particle corre-

lations function of the atoms scatter due the Raman process, was investigated,

In [o20] the relation between breaking the Cauchy-Schwartz inequality and particle

entanglement was investigated. It was proved that breaking this inequality proofs the

existence of entanglement in the system of indistinguishable bosons.

In [o21] the analog of Hawking radiation in the ultracold bosonic gas was considered.

It was show the single particle density and two particle correlation function provides

the information about (i) the existence of 'black hole' horizon (ii) the associated acoustic

Hawking radiation and (iii) of the quantum nature of the Hawking process. Additionally it

was shown, that the considered quantities are measurable using present-day experimental
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