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Abstract

Motivated by the phenomenon of jet quenching observed in relativistic heavy-ion col-

lisions, we compute the collisional energy loss of a test parton propagating through a

quark-gluon plasma in which the momentum distribution is anisotropic. Consequently,

the system, which is assumed to be weakly coupled, is unstable due to chromomagnetic

plasma modes. To derive a spectrum of the collective modes, which is needed for the

energy loss calculations, we have considered distributions with all degrees of deforma-

tion along the beam axis from extremely prolate - infinitely elongated, through isotropic

to extremely oblate - infinitely squeezed in the beam direction. In every case we have

calculated analytically or numerically the dispersion curves for the full spectrum. Un-

stable modes are shown to exist in all cases except that of isotropic plasma. We have

derived the conditions on wave vectors for an existence of these instabilities. We have

also discussed stable modes which are not limited to small domains of wave vectors and

therefore have an important influence on the system’s dynamics. The spectrum of the

collective excitations is further used to calculate the energy loss of a high-energy parton

scattering elastically. The approach, which is formulated as an initial value problem, is

designed to study an unstable plasma, but it also reproduces the well known result in

case of equilibrium plasma. As examples of unstable plasmas, the extremely prolate and

oblate systems are considered, and two classes of initial conditions are discussed. When

the initial chromodynamic field is uncorrelated with the colour state of the parton, the

magnitude of the energy losses is comparable to that in an equilibrium plasma of the

same density. When the initial chromodynamic field is induced by the test parton, it

can be either accelerated or decelerated depending on the relative phase factor. With

a correlated initial condition, the energy transfer grows exponentially in time and its

magnitude can much exceed the absolute value of energy loss in equilibrium plasma.

The energy loss is not only time dependent but it is also strongly directionally depen-

dent. Consequences of our findings for the phenomenology of jet quenching in relativistic

heavy-ion collisions are briefly considered.
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Streszczenie

Aby dog lȩbnie zrozumieć zjawisko t lumienia dżetów obserwowane w zderzeniach ciȩżkich

jonów, badalísmy straty energii testowego wysokoenergetycznego partonu poruszaja̧cego

siȩ w plaźmie kwarkowo-gluonowej, w której rozk lad pȩdu cza̧stek plazmy jest anizotro-

powy. Na skutek anizotropii uk lad, który z za lożenia jest s labo sprzȩżony, jest niesta-

bilny ze wzglȩdu na plazmowe mody chromomagnetyczne. Aby uzyskać widmo wzbudzeń

kolektywnych, które jest niezbȩdne do wyliczenia strat energii, rozważylísmy rozk lady

pȩdowe ze wszystkimi możliwymi jednowymiarowymi deformacjami wzd luż osi wia̧zki od

skrajnie ,,prolate” - nieskończenie wyd lużonego, przez izotropowy, po skrajnie ,,oblate”

- nieskończenie sp laszczony w kierunku wia̧zki. W każdym z rozważonych przypadków

rozwia̧zalísmy analitycznie ba̧dź numerycznie równanie dyspersyjne, aby uzyskać pe lne

spektrum wzbudzeń. Pokazalísmy, iż niestatbilności wystȩpuja̧ w każdej konfiguracji

z wyja̧tkiem systemu izotropowego. W przypadku, gdy w uk ladzie istnieja̧ mody niesta-

bilne, wyprowadzony zosta l warunek na wartość wektora falowego, kiedy pojawiaja̧ siȩ

niestabilności. Zosta la przedstawiona również dyskusja modów stabilnych, które w prze-

ciwieństwie do niestabilnych nie sa̧ ograniczone do pewnego zakresu wektora falowego

i dlatego maja̧ znacza̧cy wp lyw na dynamikȩ uk ladu. Wyliczone widmo modów kolekty-

wnych zosta lo użyte w dalszej czȩści pracy do określenia zderzeniowych strat energii

wysokoenergetycznego partonu. Podej́scie zaprezentowane w niniejszej rozprawie ma

opisywać uk lady niestabilne, jednakże reprodukuje ono także dobrze znany wynik dla

uk ladu równowagowego. Obliczaja̧c straty energii, rozważylísmy dwa przyk lady uk ladów

niestabilnych - skrajnie ,,prolate” i ,,oblate”, oraz dwie klasy warunków pocza̧tkowych.

Jeśli pocza̧tkowe pole chromodynamiczne jest nieskorelowane z kolorowym stanem par-

tonu, wówczas wielkość strat energii jest porównywalna z przypadkiem izotropowym. W

przypadku, gdy pole jest indukowane przez testowy parton, może on być przyśpieszany

ba̧dź spowalniany zależnie od wyboru warunku pocza̧tkowego. Wartość przekazu en-

ergii w takim wypadku rośnie eksponencjalnie w czasie, a jej absolutna wartość może

znacza̧co przewyższać wartość równowagowa̧. Wykazalísmy, iż straty energii przejawiaja̧

silna̧ zależność od czasu i kierunku. Omówione zosta ly fenomenologiczne konsekwencje

naszych spostrzeżneń. Podstawa̧ rozprawy sa̧ nastȩpuja̧ce oryginalne publikacje:
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Chapter 1

Introduction

1.1 Quark Gluon Plasma

Over the past hundred years, our ideas about the ultimate constituents of matter have

undergone a considerable evolution. In the early 1960’s with the construction of proton

accelerators with energies above the threshold for anti-proton production, a lot of new

particles were discovered. There were doubts whether truly elementary constituents exist

as all newly discovered hadrons where equally elementary or equally complex. In 1964

independently Murray Gell-Mann [1] and George Zweig [2] introduced the idea of quarks.

According to Gell-Mann, it was mostly a mathematical concept which was based on the

notification that particles of similar mass sharing the same quantum numbers (baryon

number, spin, parity) follow the symmetry of the SU(3) group and the quarks constituted

its fundamental representation. For Zweig quarks were rather physical objects which form

hadrons. These ideas successfully explained the systematics of observed hadrons and also

led to the prediction of new particles. The quark model assumed 3 elementary quarks

(up, down, strange) with spin 1
2 and fractional electrical charge −1

3 or 2
3 of the elementary

charge e. To explain an existence of the new baryon Ω− of spin 3
2 , which consists of three

strange quarks (because its strangeness equals 3), a new degree of freedom (colour) was

introduced by Greenberg [3], to allow 3 identical quarks to occupy the same momentum

and spin state. In 1970 Glashow and Bjorken [4] added the fourth charm quark to explain

a suppression of certain channels in weak decays of strange-particles. The quark model

evolved into a complex theory with 6 elementary quarks and gluons. Table 1.1 gives the

additive quantum numbers for the three generations of quarks.

At the same time, thanks to theoretical efforts by Feynman [5] and Bjorken [6], the

quark-like structure of proton was found in the experiment [7], where the deep inelastic

scattering of electrons on protons (DIS) was studied. Meanwhile the theory of strong

1



Chapter 1 Introduction

d u s c b t

Q - electric charge − 1
3

2
3

− 1
3

2
3

− 1
3

2
3

S - strangeness 0 0 −1 0 0 0

C- charm 0 0 0 +1 0 0

B - bottomness 0 0 0 0 −1 0

T - topness 0 0 0 0 0 +1

Table 1.1: Additive quantum numbers of quarks.

interactions, known nowadays as QCD, was developing. The theory was formulated

as a non-Abelian gauge field theory introduced by Yang and Mills [8]. The Quantum

ChromoDynamics (QCD) was finalized soon after the discovery of asymptotic freedom

by Gross, Wilczek [9] and Politzer [10], in the early 1970’s.

In 1975 Collins and Perry [11] suggested an existence of a new phase of nuclear matter

composed of quarks and gluons, which was soon later termed by Shuryak [12] quark–gluon

plasma (QGP). In 1978 Shuryak found that at high temperature T the colour charge

is screened, indicating that the system was then weakly interacting. When we consider

different states of matter, it is common to use a phase diagram. Such a diagram for

nuclear matter is presented in Fig. 1.1, where different states are shown in a plane of

baryochemical potential and temperature. At low temperatures and/or baryochemical

potential, there is a hadron gas which changes into the quark-gluon plasma when the

temperature or/and baryochemical potentials is sufficiently high.

It was realized in the 1970’s that it is possible to obtain a drop of superdense nuclear

matter in a terrestial laboratory by colliding of relativistic heavy ions [13, 14]. It initiated

a rapid progress in experimental heavy-ion physics which is briefly described in Sec. 1.3.

In February 2000 leaders of the experimental CERN’s heavy ion programme presented

“the compelling evidence for the existence of a new state of matter in which quarks,

instead of being bound up into more complex particles such as protons and neutrons,

are liberated to roam freely. . . ” [15]. The new state of matter - quark-gluon plasma was

discovered.

In the today’s cold Universe, we do not observe free quarks - they are confined in

nucleons. Maybe there are some deconfined quarks in the dense cores of neutron stars, but

it is still uncertain. However, the early Universe was extremely hot [16]. Its temperature

exceeded 150 MeV (about 2·1012 K) until about 10 ms after the Big Bang. QCD predicts

that such conditions are sufficient for the quark-gluon plasma to exist. Understanding

of the evolution of our Universe thus requires knowledge of the structure and dynamics

of QGP governed by Quantum Chromodynamics.

– 2 –
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Figure 1.1: Phase diagram of nuclear matter. Figure taken from [17].

1.2 Quantum Chromodynamics

QCD is defined by the Lagrangian which encodes the dynamics in a fundamental way.

The strong forces come from the requirement of local SU(3) gauge symmetry of the La-

grangian. Quarks interact by the exchange of massless spin-one gluons which due to the

non-Abelian nature of the theory carry themselves the colour charge, and consequently

interact with each other. The Lagrangian of the interacting quarks and gluons is:

LQCD =
∑
f

ψ̄fγ
µ
(
i∂µ − gAaµτa

)
ψf +

Nf∑
f=1

mf ψ̄fψf −
1

4
F aµνF

µν
a , (1.2.1)

where ψf denotes the quark spinor field of flavour f = u, d, s, . . . , γµ are the Dirac

matrices, g is dimensionless coupling constant, τa are the generators of the fundamental

representation of the SU(3) group, a (a=1, 2,. . . . . . , 8), mf is the mass of a quark of

flavour f , Nf is the number of quark flavours, fabc are the antisymmetric structure

constants of SU(3) group, Aaν and F aµν denote the gluon potential and field strength

tensor of colour a, respectively, related to each other as

F aµν = ∂µA
a
ν − ∂νAaµ − gsfabcAbµAcν . (1.2.2)

The third term in (1.2.2) is responsible for gluon self-interactions which appears when

we construct the gauge-invariant Lagrangian. The square of F aµν in (1.2.2) gives rise to

both cubic and quartic gluon terms corresponding to 3 and 4 gluon couplings.

The two most significant features of QCD are the asymptotic freedom and colour con-

finement.

– 3 –
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• Asymptotic freedom

The asymptotic freedom (discovered by Gross, Wilczek and Politzer [9, 10]) implies that

with increasing momentum transfer Q or with decreasing distance 1
Q , the interaction

between quarks becomes weaker and weaker, that is the coupling constant decreases

with Q2 as:

αs(Q) =
g2

4π
=

12π

(33− 2Nf ) log

[
Q2

Λ2
QCD

] , (1.2.3)

where ΛQCD ≈ 200MeV is the QCD scale parameter.

Equation (1.2.3) shows that αs(Q) → 0 as Q2 → ∞. In the limit of large momentum

transfer, the interactions can be treated in a perturbative way, which requires a small

value of the strong coupling constant. The perturbative QCD is very successful theory

in describing hard processes (Q2 � Λ2
QCD) such as production of jets. The coupling con-

stant also decreases logarithmically with growing temperature of QGP, but just above

the deconfinement αs(Q) = 0.2− 0.5 and the perturbative approach is not easily appli-

cable. Fig. 1.2 presentes the value of the running coupling constant, αs, as a function

of the energy scale Q. The curve that slopes downwards (negative beta function) is a

prediction of the asymptomatic freedom of QCD and, as can be seen, agrees very well

with the measurements.

Figure 1.2: The running coupling constant αs, as a function of momentum transfer
Q. Figure taken from [18].

– 4 –
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• Colour confinement

The confinement property implies that any isolated object of Nature must be colour

neutral or, technically, a singlet of the SU(3) colour group. This means that the colours

of the quarks, antiquarks, gluons which form a hadron must combine to give a net

colourless object. The confinement of colours does not, obviously, exclude an existence

of QGP. However it requires that the plasma as a whole has no colour charge. While

the asymptotic freedom is well understood, an explanation of the confinement remains

a theoretical challenge.

1.3 Main experimental programmes

Heavy-ion collisions provide a unique opportunity to study the hadronic matter in a

laboratory. The systematical experimental research program with relativistic heavy-ions

started with experiments at the Bevelack at Berkeley in the 1980s. The first, truly rel-

ativistic ion beam of medium mass ions was obtained at European Center for Nuclear

Research (CERN) at the Super Proton Synchrotron (SPS) in 1986. The beginning of the

XXI century started with the operation of the Relativistic Heavy Ion Collider (RHIC)

at BNL. Ten years later in 2010 at CERN, the largest experimental facility - the Large

Hadron Collider (LHC) was completed. In this chapter we will briefly review the exper-

imental programs at AGS, SPS, RHIC and LHC.

• The Alternating Gradient Synchrotron at BNL

The AGS synchrotron was built in 1957 and accelerated the high intensity proton beam

to the energy of 33 GeV. The AGS synchrotron was also used to accelerate Si ions at

energies of 14 GeV per nucleon, and heavier ions like Au up to 11 GeV per nucleon.

Several fixed target heavy-ion experiments were performed, like E866, E877, E891, E895,

E896, E910, E917 to study the hadronic matter at high temperature. However it is not

clear whether the AGS could produce the deconfimed matter since the initial energy

density is presumably below 1 GeV/fm3.

• The Super Proton Synchrotron at CERN

In 1976 the Super Proton Synchrotron was built, allowing the acceleration of protons

up to 500 GeV. Initially the SPS was a proton accelerator but later on SPS became a

proton - antiproton collider. In 1981 the first proton - antiproton collisions at a center

of mass energy of 520 GeV took place. In 1986 the SPS started the ion program, the

– 5 –
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ions of 16O and 32S were accelerated to the energy 200 GeV. Several ion experiments

contributed to the SPS heavy ion physics programme: WA80, WA93, WA98, WA85,

WA94, WA97, NA57, Helios-2, NA44, CERES, Helios-3, NA35, NA49, NA36, NA52,

NA38, NA50, NA60, and NA61. The names WA and NA came from the experimental

fixed-target halls in the west area (WA) in Switzerland and north area (NA) in France.

Some interesting physical phenomena have been discovered at SPS like strangeness,

dilepton enhancements, and the J/ψ suppression. These experimental facts indicate that

the deconfined state of strongly interacting matter is produced in heavy-ion collision.

• The Relativistic Heavy Ion Collider at BNL

RHIC was the first ever built machine dedicated to study collisions of relativistic heavy

ions. The primary goal of RHIC was the experimental investigation of the QCD phase

transition. RHIC started regular beam operations in the summer of year 2000 producing

head-on collisions of two beams of fully stripped Au ions with the center-of-mass energy

130 GeV per nucleon-nucleon collision. Above mentioned AGS is the injector of the

RHIC, the beams are accelerated in two different rings in the opposite directions to the

energy 9 GeV and then the beams are delivered to RHIC. RHIC collider allows also to

study collisions of polarised protons at 500 GeV, and collisions of d-Au, Cu-Cu, Au-Au

and U-U in the energy range 20− 200 GeV per nucleon pair. The impressive number of

the experimental results, which are summarized in [19–22], have been obtained by four

major experiments at RHIC: PHENIX, STAR, PHOBOS and BRAHMS.

The Solenoidal Tracker at RHIC (STAR) is one of two largest RHIC experiments. STAR

is the only one RHIC detector with the full azimuthal coverage in particle detection and

identification. The STAR detector is designed for a very broad physical program. It is

well suited for otherwise difficult measurements like non-statistical fluctuations of event

multiplicity or high-pT jets. Its experimental setup has also been used for strangeness

measurements by detection of particle’s decays.

PHENIX (Pioneering High Energy Nuclear Interaction eXperiment) has been designed

for good identification of electromagnetic and hard signals as well as the high-pT jets

and particle correlations.

PHOBOS, which was a much smaller experiment than the two presented above, was

used for precise measurements of charged particle multiplicity in a wide range of rapidity

together with their azimuthal distribution.

BRAHMS (Broad RAnge Hadron Magnetic Spectrometers) was designed to measure

event multiplicity and inclusive rapidity distribution in a wide rapidity range.

These four experiments have developed a high quality physics program, producing a

huge amount of experimental results. Today only the two major experiments: PHENIX

and STAR are still active and taking data.

– 6 –
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• The Large Hadron Collider at CERN

LHC is designed to collide two counter rotating beams of protons or heavy ions. Up-

graded SPS is used as an injector for LHC. It generates a Pb ion beam of 177 GeV

per nucleon. In the November 2010 the first lead-lead collision with the energy of 2.76

TeV per pair of colliding nucleons was observed. After the long shutdown in 2013/2014

the nominal energy 5.5 TeV per nucleon pair was reached. Three of the four LHC ex-

periments participate in the heavy ion program: ALICE, ATLAS and CMS. They have

already obtained many interesting results [23–27].

ALICE (A Large Ion Collider Experiment) is the only LHC experiment fully devoted to

study QGP. The physics of ALICE program is very rich, it includes the following main

topics: the thermalization of QGP, the mechanisms of energy loss and the dissociation

of quarkonium states.

LHC experiments not only confirm all results, which were obtained at RHIC, at much

higher energy, but they also provide a lot of new information. The heavy-ion programs

at RHIC and LHC promise fascinating and exciting results in the next decade.

– 7 –
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1.4 Important experimental results

As already mentioned, a primary goal of experimental analysis of heavy-ion collisions

is to understand and characterize a dynamics of dense partonic medium. It occurs that

measurements of azimuthal distribution of particles produced in heavy ion collisions have

provided crucial information about quark-gluon plasma. In this chapter we will briefly

present two main physical results from the RHIC and LHC heavy ion programmes: the

collective flow and jet quenching. These two phenomena motivate our studies.

• Collective flow

The experimental observable, which is sensitive to the dynamics of the early stages of

heavy-ion collisions, is angular distribution with respect to the reaction plane defined by

beam axis and the impact parameter. When we consider non-central collisions of heavy

nuclei, then the initial matter distribution is anisotropic in coordinate space. This initial

spatial anisotropy of the overlapping zone of colliding nuclei is converted via the action

of azimuthally anisotropic pressure gradients into the momentum space anisotropy of

particle distribution, see Fig. 1.3. This anisotropy influences the azimuthal distribution

of produced particels which is expressed as a Fourier series

dN (pT , φ)

dpTdφ
=
dN (pT )

dpT

(
1 + 2

∞∑
n=0

vn(pT ) cos (nφ)

)
, (1.4.1)

where vn are the flow coefficients, pT is the transverse momentum and φ is the azimuthal

angle. The distribution averaged over events is azimuthally symmetric, then only the

radial flow (v0), survives. The first, second and third Fourier components of the azimuthal

distribution of the final state hadrons present in the equation (1.4.1) are known as the

directed (v1), elliptic (v2), and triangular (v3) flow, respectively.

Figure 1.3: Almond-shaped interaction volume after a non-central collision of two
nuclei and generation of elliptic flow. Figure taken from [28].
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The largest of the anisotropic flows is the elliptic flow which has been extensively stud-

ied at RHIC and LHC. The observed large value of the elliptic flow suggests that the

strongly interacting matter equilibrates at the early stage of the collision, and then it

evolves following the laws of hydrodynamics. QGP also behaves like an almost perfect

fluid. Fig. 1.4 presents the elliptic flow for various identified particles, as obtained by

PHENIX and STAR in the low pT region. Figure shows the reasonable agreement be-

tween experimental results and ideal hydro calculations for pT up to 2 GeV/c.

Figure 1.4: The elliptic flow as a function of the transverse momentum measured by
PHENIX and STAR. Figure taken from [29].

To apply hydrodynamic models, one has to assume that the plasma system is at least ap-

proximately in a local thermal equilibrium. It is needed because an equilibrium equation

of state (EOS) is used to close the system of equations, and because the structure of the

energy-momentum tensor requires an isotropy of the system. The success of ideal hydro-

dynamic models in describing the measured elliptic flow implies that the equilibration

time of the system is as short as 1 fm/c [30]. Therefore one asks what is a mechanism

of such a fast thermalization.

• Jet quenching

At the early stage of nuclear collisions two energetic partons are sometimes created back

to back in a hard scattering process. Bjorken suggested that such an energetic parton

can loose a large fraction of its energy flying across the deconfimed medium [31]. This

effect is called the jet quenching. The STAR collaboration proposed a simple method

to observe the phenomenon. In the center of mass of colliding nuclei, one looks of the

high pT particle emitted perpendicularly to the beam axis. Then, one should observe an

associated particle on the opposite side at 180◦.
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Fig. 1.5 compares the data for gold-gold central collisions, where the hot medium is ex-

pected to be formed, with the proton-proton and deuterium-gold collisions. The expected

correlation is clearly visible for p-p and d-Au data - two peaks separated by 180circ. For

Au-Au collisions we see only the peak at zero degree (near side peak). Vanishing of the

away-side peak at 180◦ gives a hint that a coloured partonic medium was created which

quenched the jet.

Figure 1.5: Dihadron angular correlation in Au-Au, d-Au, and p-p collisions at√
sNN = 200 GeV. Figure taken from [32].

In a more quantitative investigation of the jet quenching, one considers the nuclear

modification factor (RAA), which measures the yield of hadrons relative to the expected

yield from proton-proton reactions and it is expressed by the equation:

RAA (y, pT ) =
1

〈Ncoll〉

d2NAA
dpT dy

d2Npp
dpT dy

, (1.4.2)

where d2NAA
dpT dy

and
d2Npp
dpT dy

are the single particle inclusive distributions in A-A and p-p

collisions, respectively, y is a given rapidity and pT is a transverse momentum, and

〈Ncoll〉 is the average number of binary collisions in the heavy ion medium. RAA is a

nice quantity to work with, as it displays the effect of nuclear collisions: RAA = 1 means

no modification when compared to the trivially scaled p-p collisions, RAA > 1 means an

enhancement, and RAA < 1 means a suppression. High transverse momentum hadrons,

such as π0 and η mesons are supressed in central Au-Au collisions when compared

to measurements in p-p collisions. The first evidence of parton energy loss was found

at RHIC. Similar results have been obtained at LHC at much broader pT range. The

evolution of the nuclear modification factor with center-of-mass energy, from the SPS to

RHIC and then to the LHC, is presented in Fig. 1.6.
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Figure 1.6: The nuclear modification factor RAA in central heavy-ion collisions at
three different center-of-mass energies, as a function of pT , for neutral pions and charged

hadrons, compared to several theoretical predictions. Figure taken from [33].

In the range pT = 5–10 GeV/c, the suppression at LHC is stronger than that observed

at RHIC. Beyond 10 GeV/c, RAA shows a rising trend, but at pT as large as 100 GeV

the nuclear suppression factor is still 0.5–0.6.

1.5 Anisotropic plasma and role of instabilities

The quark-gluon plasma occurs as a transient state in relativistic heavy-ion collisions,

see e.g. [34]. At the early stage of the collisions, the momenta of produced partons are

mostly along the beam, which means that the characteristic longitudinal momentum

is much bigger than the transverse one. The momentum distribution is thus strongly

elongated along the beam - it is prolate. The distribution evolves - mostly due to the

free streaming - and, as discussed in e.g. [35], it becomes squeezed along the beam or

oblate with the characteristic transverse momentum bigger than typical longitudinal

momenta. The system moves towards an isotropic local equilibrium state but does not

actually reach it because of viscous effects [36, 37].

Using theoretical methods known from the electron-ion plasma extended to the quark-

gluon plasma transport theory, one can study chromodynamic collective modes in anisotropic
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QGP [38]. Then, one proofs, assuming that the quark-gluon plasma is weakly coupled, an

existence of the instability analogous to the so-called Weibel or filamentation instability.

Weibel showed [39] that the unstable transverse mode exists in electrodynamic plasma

with the two-stream momentum distribution and he derived its growth rate in linear

response theory. The instability generates strong magnetic field which was confirmed

experimentally [39]. As shown in Chapter 2 the filamentation mode exists not only in

the two-stream plasma but even an infinitesimally small anisotropy is sufficient to cause

the instability.

The growth rate of the unstable transverse mode is parametrically gT for a sufficiently

anisotropic momentum distribution [40–45]. The parameter T is here not the temper-

ature but rather a typical momentum of plasma constituents which in the equilibrium

plasma coincides with the temperature. Let us note that the characteristic rate of binary

parton-parton collisions varies from g4T to g2T depending whether the collision is hard

or soft with the typical momentum transfer of order T or gT [46]. Therefore, the growth

of unstable modes is much faster than the parton-parton collisions if g � 1. This fact has

two important consequences. First of all, it guarantees a very existence of the unstable

modes - if the collisions are faster than the mode growth, the collisions actually prevent

the mode growth. The fact that the instabilities are faster than the collisions also makes

the instabilities important in the process of system’s equilibration.

As mentioned in the Chapter 1.4, a hydrodynamic description of relativistic heavy-ion

collisions requires a local thermal equilibrium and experimental data on the particle

spectra and elliptic flow suggest that the matter produced in heavy-ion collision reaches

the thermal equilibrium in a very short time, as short as 1 fm/c [30]. Fast equilibration is

naturally explained by the assumption that the quark-gluon plasma is strongly coupled

[47], as the relaxation time, which is proportional to gn with n = 2÷4, is then very short.

But one rather expects that, due to extremely high energy density at the collision early

stage, the asymptotic freedom regime of QCD is then reached. In this case, the quark-

gluon plasma is weakly coupled. So, one asks whether the weakly interacting plasma

may equilibrate within 1 fm/c.

To thermalize a system, a few hard collisions of momentum transfer of order T are

needed or many collisions of smaller momentum transfer. The calculations performed

within the ‘bottom-up’ thermalization scenario [48], where not only binary collisions but

also the particle production and absorbtion (2 ↔ 3) are taken into account [49], give

an equilibration time of at least 2.6 fm/c [50] which is rather too long. However, the

instabilities, which are generated in anisotropic plasma, speed-up the equilibration of

the quark-gluon plasma. They help to isotropize the momentum distribution due to the

Lorentz force, which acts on the plasma constituents, and due to the momentum carried
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directly by the unstable modes. The instabilities thus play a crucial role in the early

stage nonequilibrium plasma.

1.6 The aim of the thesis and its outline

The aim of this thesis is to consider a behaviour of high-energy parton which flies across

an anisotropic unstable plasma, and calculate an energy transfer between the parton

and the medium. We want to know whether the energy, which is lost in a short transient

phase of non-equilibrium unstable plasma, can give a sizeable contribution to the total

energy loss of high-energy parton in relativistic heavy-ion collisions. The problem of the

energy loss is formulated here as an initial value problem and it crucially depends on a

spectrum of collective excitations in the plasma. Therefore, after a general introduction

to the physics of quark gluon plasma, we submit in Chapter 2 a systematic analysis of

collective modes in anisotropic plasma.

We start with a definition of the general dispersion equation of plasmons - gluon collective

modes which is discussed and solved later on. Our analysis of the collective modes begins

with the isotropic plasma in Sec. 2.2 which provides a reference for all other cases.

Section 2.3 is devoted to the two-stream system where spectrum of plasmons is found

in a closed analytic form for any orientation of the wave vector. In Sec. 2.4 we discuss

the anisotropic momentum distributions which is obtained by deforming the isotropic

one. Section 2.5 is dedicated to the weakly anisotropic plasma where the spectrum

of collective modes changes qualitatively when compared to the isotropic plasma. In

particular, instabilities occur. However, the calculations are almost completely analytical

when the anisotropy is weak, which makes this situation important and interesting. In

Sec. 2.6 we present numerically obtained dispersion relations for finite anisotropy. The

next two Secs. 2.7 and 2.8 deal with the extremely prolate - infinitely elongated in one

direction, and extremely oblate - infinitely squeezed in one direction, respectively, which

again can be treated analytically to some extent.

The results which are given in Chapter 2 are used in Chapter 3, where we first derive

the general energy loss formula of a relativistic classical parton in an unstable QCD

plasma which depends on the initial conditions, see Section 3.1. Our analysis of energy

loss starts with the equilibrium limit which is discussed in Sec. 3.2. The dependence

on initial conditions drops out, and our expression reduces to the familiar equilibrium

result. In Sec. 3.3 we introduce two classes of initial conditions that we will apply later

on to unstable plasmas. In Sec. 3.4 we study the effect of self-interaction which needs

to be subtracted from the energy loss formula. We develop further our formalism in

Sec. 3.6, where we also apply it to the extremely prolate and oblate systems. In Sec. 3.4

we present our numerical results on the energy loss in unstable plasma. Our findings are
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summarized and the outlook is presented in Chapter 4.

In Appendix A.1 we remind the reader how the dispersion equation of plasma waves is

derived in classical electrodynamics. Appendix A.2 presents some useful results for the

components of the anisotropic polarisation tensor. Appendix A.3 shows that according to

our formula the energy loss is real as it should be. The temporal axial gauge is compared

to the Feynman-Lorentz gauge in Appendix A.4.
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Chapter 2

Collective modes

In this part of the thesis, based on our original papers [51, 52], we analyze collective

modes of quark-gluon plasma which will play the crucial role in the computation of

energy loss presented in Chapter 3.

A spectrum of collective excitations of quark-gluon plasma is very rich. There are collec-

tive modes that correspond to plasma particles, that is, quarks and (transverse) gluons,

and there are also collective excitations which are genuine many-body phenomena like

longitudinal gluon modes (longitudinal plasmons) and phonons. We focus here on lon-

gitudinal and transverse gluon collective modes which we all call plasmons. A mode is

called longitudinal when the electric field is parallel to the wave vector k (E||k), while in

the second case the field is perpendicular to k (E⊥k), and the mode is called transverse.

Since the electric field plays a key role in the generation of longitudinal modes, they are

also called electric modes, while the transverse modes are called magnetic modes.

Classically plasmons correspond to plasma oscillations or plasma waves. A system, which

is on average spatially homogeneous and neutral, fluctuates causing an appearance of

local charges and currents generating electric and magnetic fields. The fields in turn

interact with charged plasma particles and the plasma experiences a collective motion.

In the early stage of heavy-ion collision the parton momentum distribution is elongated

in the beam direction 〈|pL|〉 � 〈pT 〉 but due to rapid longitudinal expansion the plasma

cools faster in the longitudinal direction leading to 〈|pL|〉 � 〈pT 〉. Such a momentum

anisotropy leads to collective modes having characteristic behaviour very distinct from

what happens in isotropic plasma which has been extensively studied, see e.g. the hand-

book [53], and which we analyze here as a reference point.

In the weakly-coupled quark-gluon plasma a presence of momentum anisotropy induces

unstable plasma modes, the amplitudes of which exponentially grow in time. When
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the instability occurs, a kinetic energy of plasma particles is converted to an energy

of chromodynamic field. This process speeds up an equilibration of the system and

therefore it plays an important role in the dynamical evolution of a quark-gluon plasma,

as mentioned in Sec. 1.5.

We start the discussion of anisotropic systems with a momentum distribution with more

than one maximum - the two-stream system. Such a distribution is common in the

electron-ion plasma, but in relativistic heavy-ion collisions the momentum distribution

is expected to be decreasing in every direction and the two-stream distribution is rather

inappropriate. However, it can be treated as a toy model of unstable QGP.

Further on, we study a quark-gluon plasma with the momentum distribution introduced

by Romatschke and Strickland [43, 54] who parameterized an anisotropic momentum

distribution by deforming an isotropic one. This distribution, which is appropriate for

partons produced in relativistic heavy-ion collisions, has been used to study various as-

pects of quark-gluon plasma, see e.g. [55–59]. We will use the Romatschke-Strickland

momentum distribution to compute the energy loss of a highly energetic parton travers-

ing an unstable QGP, which, as will be seen, depends crucially on the spectrum of

collective excitations. Therefore, a complete information about the collective modes is

important for the energy-loss calculations.

Our analysis of plasmons is methodologically very close to the study by Romatschke and

Strickland [43, 54], but they mostly focused on unstable modes, and did not pay much

attention to the stable excitations. The stable modes manifest an interesting property of

mode coupling which is well known in the electron plasma, however it was not discussed

in the context of QGP. It should also be noted that the stable modes, in contrast to the

unstable modes, are not limited to small domains of wave vectors. So their influence on

the system’s dynamics may be very important.

There is a small number of configurations when a complete and exact spectrum of

collective modes can be obtained analytically. So, we often use numerical methods to

obtain the dispersion relations. If the dispersion equation has to be solved numerically

we also solve it analytically by looking at certain special cases such as large or small

anisotropy, small wave vector, or the wave vector (almost) parallel or perpendicular to

the anisotropy direction to check our numerical result.
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2.1 Formulation of the problem

In this section we present the general dispersion equation which depends on the momen-

tum distribution of plasma constituent. It will be solved in the subsequent sections for

different plasma momentum distributions.

A dispersion equation for plasma collective excitations can be obtained in two ways which

are rather different at first glance. These equations are the conditions for existence of so-

lutions of a homogeneous equation of motion. In the case of QGP the equations of motion

are the Yang-Mills equations of the chromodynamic field. In kinetic theory, the equa-

tions of motion depend on the chromodynamic permeability, or chromodielectric tensor,

which contains an effect of the plasma medium. In a quantum field theory, dynamical

information about the medium is contained in the polarization tensor which enters the

gluon propagator, and the dispersion equation is just the equation that determines poles

of the gluon propagator. A character of the approach - whether it is classical or quantum

mechanical - depends on how the polarization tensor or chromodynamic permeability

are calculated. When using kinetic theory, one typically applies a linear response anal-

ysis of classical (or semiclassical) transport equations. Within the quantum field theory

formulation, the standard calculation use a perturbative method within the hard loop

approximation. These two approaches are fully equivalent (the latter is essentially clas-

sical in spite of its quantum-field-theory formulation) and the chromodielectric tensor

can be expressed directly in terms of the polarization tensor and vice verse. The only

quantum effects that are taken into account are those that are due to the quantum

statistics of the plasma constituents. The equivalence of the two approaches was first

discovered for the case of equilibrium plasma, see the reviews [60, 61], and the result

was later generalized to non-equilibrium systems [62, 63].

2.1.1 General dispersion equations

In Appendix A.1 we give a derivation of plasmon dispersion equation in terms of classical

electrodynamics. A dispersion equation for gluon collective excitations in the hard-loop

approximation is fully analogous:

det[Σ(ω,k)] = 0, (2.1.1)

where matrix Σ(ω,k) is defined as:

Σij(ω,k) ≡ −k2δij + kikj + ω2εij(ω,k), (2.1.2)
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here ω is the frequency, k denotes the wave vector and εij(ω,k) is the chromodielectric

tensor. For a locally colourless anisotropic plasma in the collisionless limit the dielectric

tensor equals

εij(ω,k) = δij +
g2

2ω

∫
d3p

(2π)3

vi

ω − v · k + i0+

((
1− k · v

ω

)
δjk +

vjkk

ω

)
∇kpf(p), (2.1.3)

where p and v ≡ p/|p| are the momentum and velocity of a massless parton, and

f(p) is the effective parton distribution function. For the SU(Nc) gauge group f(p) =

n(p)+n̄(p)+2Ncng(p), where n(p), n̄(p), ng(p) are the distribution functions of quarks,

antiquarks and gluons of a single colour component. We note that the chromodielectric

tensor does not carry any colour indices, as the state corresponding to the momentum

distribution f(p) is assumed to be colourless. The i0+ prescription makes the Fourier

transformed dielectric tensor εij(t, r) vanish for t < 0, which is required by causality.

In kinetic theory, the infinitesimal quantity i0+ can be treated as a remnant of inter-

particle collisions. After performing the partial integration, the chromodielectric tensor

(2.1.3) can be rewritten as

εij(ω,k) = δij− g2

2ω2

∫
d3p

(2π)3

f(p)

|p|

[
δij+

kivj + vikj

ω − v · k + i0+
+

(k2 − ω2)vivj

(ω − v · k + i0+)2

]
, (2.1.4)

which is often more convenient than the expression (2.1.3).

In the field theory formulation, where collective modes are determined by a location of

a poles of the propagator, the matrix Σij(ω,k) defined by Eq. (2.1.2) equals the inverse

retarded gluon propagator in the temporal axial gauge (A0 = 0). The dielectric tensor

εij(ω,k) is related to the retarded gluon polarization tensor Πij(ω,k) as

εij(ω,k) = δij − 1

ω2
Πij(ω,k). (2.1.5)

The polarization tensor carries Lorentz indices (µ, ν = 0, 1, 2, 3) which label coordinates

in Minkowski space (and not Cartesian indices (i, j = 1, 2, 3)). The components of the

polarization tensor, which are not determined by Eq. (2.1.5), can be reconstructed from

the transversality condition kµΠµν(k) = 0 with kµ = (ω,k), which is required by gauge

invariance.

The solutions ω(k) of Eq. (2.1.1), which represent plasmons, are, in general, complex but

the wave vector k is assumed to be real. As it was mentioned on the beginning of this

Chapter, we can distinguish the transverse and longitudinal plasmons. The transverse

modes correspond to oscillations of current, and the longitudinal ones to oscillations of

charge density. A mode is called unstable if =ω(k) > 0, because the amplitude e=ω(k)t

grows exponentially in time. When =ω(k) ≤ 0, the mode is stable and it is damped
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if =ω(k) < 0, as its amplitude decays exponentially in time. The mode is called over-

damped, when additionally it is pure imaginary.

Using kinetic theory in the linear response regime, or equivalently working in the hard

loop approximation, the dielectric and polarization tensors have the same form for chro-

modynamic and electrodynamic plasmas of massless constituents, see e.g. [38]. The spec-

trum of plasmons is also qualitatively the same in chromodynamic and electrodynamic

plasmas. Therefore, we often use the more familiar electromagnetic terminology to dis-

cuss our results.

2.1.2 Decomposition of the Σ matrix

To solve the general dispersion equation (2.1.1), one must either find zeros of the deter-

minant of the matrix Σ (2.1.2), or invert Σ and find the poles of the inverted matrix.

We will follow the second strategy.

The first step is to decompose the matrix using a complete set of projection operators

for an anisotropic system in which there is only one preferred direction given by the

vector n. In the two-stream system, the vector n is identified with the stream velocity

u. Consequently u2 ≤ 1. In case of momentum distribution obtained by deforming the

isotropic one, n = 1. We know that in isotropic plasmas, an arbitrary tensor depends only

on the wave vector k, and can be decomposed into two components, which are transverse

and longitudinal with respect to k. An arbitrary symmetric tensor, which depends on

two vectors, can be decomposed in terms of four projection operators. Following [43, 64],

we introduce the vector nT transverse to k, which equals

niT =
(
δij − kikj

k2

)
nj , (2.1.6)

and define four projectors

Aij(k) = δij − kikj

k2
, Bij(k) =

kikj

k2
,

Cij(k,n) =
niTn

j
T

n2
T

, Dij(k,n) = kinjT + kjniT ,
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which obey the following relations

AA = A, AB = 0, AC = C, (AD)ij = niTk
j ,

BA = 0, BB = B, BC = 0, (BD)ij = kinjT ,

CA = C, CB = 0, CC = C, (CD)ij = niTk
j ,

(DA)ij = kinjT , (DB)ij = niTk
j , (DC)ij = kinjT , DD = n2

Tk2(B + C).

(2.1.7)

Using this projector basis, the inverse propagator can be decomposed as

Σij = aAij + bBij + cCij + dDij , (2.1.8)

and the coefficients a, b, c and d can be found from the equations

kiΣijkj = k2b, niTΣijnjT = n2
T (a+ c),

niTΣijkj = n2
Tk2d, TrΣ = 2a+ b+ c.

(2.1.9)

With the help of the relations (2.1.7), we invert the matrix (2.1.8) and obtain

(Σ−1)ij =
1

a
Aij +

−a(a+ c)Bij + (−d2k2n2
T + bc)Cij + adDij

a(d2k2n2
T − b(a+ c))

. (2.1.10)

The inverse propagator can be written in terms of the polarization tensor as

(∆−1)ij(ω,k) = Σij(ω,k) = δij(ω2 − k2) + kikj −Πij(ω,k), (2.1.11)

and the polarization tensor is decomposed as

Πij(ω,k) = α(ω,k)Aij + β(ω,k)Bij + γ(ω,k)Cij + δ(ω,k)Dij . (2.1.12)

The coefficients α, β, γ, δ are related to the functions a, b, c, d from Eq. (2.1.8) as

a(ω,k) = ω2 − k2 − α(ω,k), (2.1.13)

b(ω,k) = ω2 − β(ω,k), (2.1.14)

c(ω,k) = −γ(ω,k), (2.1.15)

d(ω,k) = −δ(ω,k). (2.1.16)

Inverting the matrix (2.1.11), the propagator is written

∆ij = (Aij − Cij) ∆A +
(
(ω2 − k2 − α− γ)Bij − (β − ω2)Cij + δDij

)
∆G. (2.1.17)
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The dispersion equations, which are obtained from the poles of the propagator (2.1.10)

or (2.1.17), are

∆−1
A (ω,k) = a(ω,k) = ω2 − k2 − α(ω,k) = 0, (2.1.18)

1

ω2
∆−1
G (ω,k) = 0, (2.1.19)

where

∆−1
G (ω,k) = b(ω,k)

(
a(ω,k) + c(ω,k)

)
− k2n2

Td
2(ω,k) (2.1.20)

=
(
ω2 − β(ω,k)

)(
ω2 − k2 − α(ω,k)− γ(ω,k)

)
− k2n2

T δ
2(ω,k).

The factor ω−2 is introduced in Eq. (2.1.19) to remove the trivial ω = 0 solutions.
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2.2 Isotropic plasma

In this section we discuss the dispersion relations of a plasma system which is isotropic

but not necessarily in equilibrium. Plasmons in isotropic plasmas are discussed in text-

books, see e.g. [53, 65], and we include the discussion for the sake of completeness, and

as a reference for our analysis of anisotropic plasmas.

In isotropic plasmas, the vector n drops out, and the propagator and its inverse can be

written in terms of the two projection operators A and B

Σij = aAij + bBij , (Σ−1)ij = ∆ij =
1

a
Aij +

1

b
Bij . (2.2.1)

The dispersion relations are a(ω,k) = 0 and ω−2b(ω,k) = 0, where, we have introduced

the factor ω−2 to remove trivial zero solutions.

Using the decomposition (2.2.1), one derives the coefficients αiso and βiso which have the

form

αiso(ω,k) =
m2ω2

2k2

[
1−

( ω
2k
− k

2ω

)
ln
(ω + k + i0+

ω − k + i0+

)]
, (2.2.2)

βiso(ω,k) = −m
2ω2

k2

[
1− ω

2k
ln

(
ω + k + i0+

ω − k + i0+

)]
, (2.2.3)

where m is the Debye mass defined as

m2 =
g2

2π2

∫ ∞
0

dppf iso(p). (2.2.4)

If one uses the general decomposition (2.1.12), one simply finds the same result for αiso

and βiso, and γiso = δiso=0. The i0+ prescription is needed only if ω, k ∈ R and ω2 ≤ k2.

When ω and k are both real, the coefficients can be written as

αiso(ω,k) =
m2ω2

2k2

[
1−

( ω
2k
− k

2ω

)(
ln
∣∣∣k + ω

k − ω

∣∣∣− iπΘ(k − ω)
)]
, (2.2.5)

βiso(ω,k) = −m
2ω2

k2

[
1− ω

2k

(
ln
∣∣∣k + ω

k − ω

∣∣∣− iπΘ(k − ω)
)]
. (2.2.6)

For k2 � ω2, the logarithm in Eqs. (2.2.2), (2.2.3) can be expanded in powers of k/ω

and the functions αiso(ω,k) and βiso(ω,k) are approximated as

αiso(ω,k) =
m2

3

[
1 +

k2

5ω2
+O

( k4

ω4

)]
, (2.2.7)

βiso(ω,k) =
m2

3

[
1 +

3k2

5ω2
+O

( k4

ω4

)]
. (2.2.8)
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The dispersion equations for isotropic plasma are given by Eqs. (2.1.18), (2.1.19) together

with the formulae (2.2.2), (2.2.3) and read

ω2 − k2 − αiso(ω,k) = 0, (2.2.9)

1

ω2

(
ω2 − βiso(ω,k)

)
= 0. (2.2.10)

These equations describe transverse and longitudinal plasmons, respectively. Expressing

the coefficients αiso, βiso through the transverse and longitudinal components of the

dielectric tensor as

αiso(ω,k) = ω2
(
1− εT (ω,k)

)
, βiso(ω,k) = ω2

(
1− εL(ω,k)

)
, (2.2.11)

the dispersion equations (2.2.9), (2.2.10) can be written in the form

ω2εT (ω,k)− k2 = 0, εL(ω,k) = 0, (2.2.12)

which is well known in classical electrodynamics. We note that in the vacuum, where

εT,L = 1, Eqs. (2.2.12) give two transverse modes ω = ±|k| and no longitudinal one.

We also note that not having the multiplier 1/ω2 in dispersion equation (2.1.19), the

equation of longitudinal modes, which is ω2εL(ω,k) = 0, has two trivial solutions ω = 0

even in the vacuum.

We note that when counting the number of solutions, one should be careful to specify

the form of the dispersion equation under consideration. If one looks at the determinant

of the inverse propagator, as in Eq. (2.1.1), the number of solutions is 8 and not 4.

This happens because there are two trivial ω = 0 solutions and there are two possible

orientations of the chromoelectric vector E(ω,k) which are transverse to k. Therefore,

the transverse mode appears twice. For an isotropic system one can see this directly

from the matrix Σ(ω,k). Choosing k = (k, 0, 0) we have

Σ(ω,k) =


ω2 − βiso(ω,k) 0 0

0 ω2 − k2 − αiso(ω,k) 0

0 0 ω2 − k2 − αiso(ω,k)

 . (2.2.13)

To clarify a physical character of the solutions, one should remember that the dispersion

equation (2.1.1) comes from the equation of motion Σij(ω,k)Ej(ω,k) = 0. Therefore, the

component Σxx = ω2−βiso acts on Ex and thus the solution of Eq. (2.2.10) represents, as

expected, the longitudinal mode. The components Σyy, Σzz act on Ey, Ez, respectively,

and thus the solutions of Eq. (2.2.9) correspond to two transverse modes.
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Using the approximations (2.2.7), (2.2.8), the dispersion equations can be solved ana-

lytically in the long wavelength limit (ω2 � k2) and one obtains

ω2
T (k) =

m2

3
+

6

5
k2 +O

( k4

m2

)
, (2.2.14)

ω2
L(k) =

m2

3
+

3

5
k2 +O

( k4

m2

)
. (2.2.15)

The frequency at k = 0 is the lowest possible frequency of the plasma wave and is known

as the plasma frequency (usually denoted as ωp). For both transverse and longitudinal

modes in isotropic plasma, we have ωp = m/
√

3. The equality of the frequency for trans-

verse and longitudinal modes results from the fact that no direction can be distinguished

in an isotropic medium when k = 0.

The dispersion equations can also be solved analytically in the short wavelength limit

(k2 � m2) and the dispersion relations are

ω2
T (k) ≈ m2

2
+ k2, (2.2.16)

ω2
L(k) ≈ k2

(
1 + 4e−

2k2

m2 −2
)
. (2.2.17)

Thus, with increasing momentum the transverse branch becomes that of the relativistic

particle with an effective mass m∞ = m/
√

2. The longitudinal branch approaches the

light cone exponentially.

Numerical results for the transverse and longitudinal dispersion relations for arbitrary

k are shown in Fig. 2.1. The curves stay above the light cone and consequently there

is no Landau damping, as the phase velocity of the plasma waves exceeds the speed of

light. The longitudinal mode approaches the light cone as k →∞ in agreement with the

formula (2.2.17).
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Figure 2.1: Dispersion curves of transverse (solid red) and longitudinal (dotted blue)
plasmons in isotropic plasma.

2.3 Two stream system

The dielectric tensor given by Eq. (2.1.3) or (2.1.4) is fully determined by the momentum

distribution of plasma constituents. The distribution function of the two-stream system

is assumed to be:

f(p) = (2π)3n
[
δ(3)(p− q) + δ(3)(p + q)

]
, (2.3.1)

where n is the effective parton density in a single stream. The distribution (2.3.1) should

be treated as an idealization of the two-peak distribution where the particles have mo-

menta close to q or −q but it is not required that the momenta are exactly q or −q.

Further one we use the same procedure of the inversion of the Σ matrix presented in

Sec. 2.1.2, however we replace the vector n, which determines the plasma anisotropy,

by the vector u which is the stream velocity. But there is one important difference: the

vector u, which is analogous to the vector n, is not of unit length but u2 ≤ 1.

The distribution function (2.3.1) substituted into Eq. (2.1.4) provides the dielectric

tensor in the form

εij(ω,k) = δij(1− µ2

ω2
) + uiuj

µ2

ω2

(ω2 − k2)
(
ω2 + (k · u)2

)(
ω2 − (k · u)2

)2 (2.3.2)

− (kiuj + uikj)
µ2

ω2

(k · u)

ω2 − (k · u)2
,
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where µ2 ≡ g2n/Eq is a parameter analogous to the Debye mass squared, and u ≡ q/Eq

is the stream velocity. Since we consider the system of massless constituents the Eq = |q|
and u2 = 1. However, when the distribution (2.3.1) is treated as an approximation of

the two-peak structure and partons have non-vanishing momenta perpendicular to the

stream velocity, Eq ≥ |q| and u2 ≤ 1. In the subsequent section where the special cases

(k · u) = 0 and (k · u) = k2u2 are discussed, we assume that u2 ≤ 1.

Substituting the dielectric tensor expressed by Eq. (2.3.2) into the matrix sigma formula

(2.1.2), we get the result:

Σij(ω,k) ≡ (ω2 − k2 − µ2)δij + kikj − µ2(k · u)

ω2 − (k · u)2
(kiuj + uikj) (2.3.3)

− µ2(ω2 + (k · u)2)(k2 − ω2)

(ω2 − (k · u)2)2
uiuj .

Applying the decomposition (2.1.8) and solving the set of equations analogous to (2.1.9),

one finds the coefficients a, b, c, d for two-stream system:

a(ω,k) = ω2 − µ2 − k2, (2.3.4)

b(ω,k) = ω2 − µ2 − 2µ2(k · u)2

ω2 − (k · u)2
−
µ2
(
ω2 + (k · u)2

)
(k2 − ω2)(

ω2 − (k · u)2
)2 (k · u)2

k2
,(2.3.5)

c(ω,k) = −µ
2(ω2 + (k · u)2)(k2 − ω2)

(ω2 − (k · u)2)2

(
u2 − (k · u)2

k2

)
, (2.3.6)

d(ω,k) = − µ2(k · u)

ω2 − (k · u)2
−
µ2
(
ω2 + (k · u)2

)
(k2 − ω2)(k · u)

k2
(
ω2 − (k · u)2

)2 . (2.3.7)
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2.3.1 Special cases

We first consider two special limits which are quite simple to solve analytically. We

analyze configuration when k ‖ u (θ = 0◦), then we discuss the limit k ⊥ u (θ = 90◦).

This analysis is useful to make a bridge with our next investigations.

2.3.1.1 Special case: k||u

When the decomposition (2.1.8) is used to invert the matrix Σ, the case (k ·u)2 = k2u2

needs some care as then uT = 0. The fact that the vectors k and u are parallel to each

other means that the matrix Σ actually dependes on one vector only. Consequently, one

needs only the matrices A and B to fully decompose Σ i.e.

Σ = aA+ bB , (2.3.8)

where the coefficients a(ω,k) and b(ω,k) are found from the equations

kiΣijkj = k2b , TrΣ = 2a+ b .

The inverse matrix equals

Σ−1 =
1

a
A+

1

b
B . (2.3.9)

For (k · u)2 = k2u2, the matrix Σ (2.1.2) equals

Σij(ω,k) = (ω2 − µ2 − k2)δij +

(
1− 2µ2u2

ω2 − k2u2
−
µ2u2

(
ω2 + k2u2

)
(k2 − ω2)

k2
(
ω2 − k2u2

)2
)
kikj ,

and the coefficients a(ω,k) and b(ω,k) are found to be

a(ω,k) = ω2 − µ2 − k2, (2.3.10)

b(ω,k) = ω2 − µ2 − 2µ2k2u2

ω2 − k2u2
−
µ2u2

(
ω2 + k2u2

)
(k2 − ω2)(

ω2 − k2u2
)2 . (2.3.11)

The dispersion equation (2.1.18) a(ω,k) = 0 gives a quite simple solution which repre-

sents the transverse plasmon:

ω2
α(k) = µ2 + k2. (2.3.12)

Instead of the second dispersion equation (2.1.20), we have the equation b(ω,k) = 0,

which gives the longitudinal modes. With the coefficient b(ω,k) given by the formula

– 27 –



Chapter 2 Collective modes

(2.3.11), the second dispersion equation is:

ω2

(
ω4 − (2k2u2 + µ2(1− u2))ω2 + k4u4 − µ2k2u2(1− u2)

)
= 0, (2.3.13)

which has two solutions:

ω2
±(k) = k2u2 +

λ2

2
± λ

2

√
8k2u2 + λ2, (2.3.14)

where λ ≡ µ
√

1− u2. As seen, ω2
+(k) is always positive but ω2

−(k) is negative for k2 < λ2

u2
.

Then, we have the instability which is well known in plasma physics as the two-stream

electrostatic instability. When u2 → 1, the mode ω2
−(k) becomes stable and ω2

−(k) =

ω2
+(k) = k2.

The solution (2.3.12) and (2.3.14) can be also easily found directly from the matrix Σ.

Choosing u = (0, 0, u) and k = (0, 0, k) the matrix Σ is

Σ(ω,k) =


ω2 − µ2 − k2 0 0

0 ω2 − µ2 − k2 0

0 0 ω2 − µ2 − 2µ2k2u2

ω2−k2u2 −
µ2(ω2+k2u2)(k2−ω2)u2

(ω2−k2u2)2

 .

(2.3.15)

The equation detΣ = 0 gives, as expected, the solutions (2.3.12) and (2.3.14) and the

first one is doubled.

2.3.1.2 Special case: k ⊥ u

Let us now consider a situation when the angle between k and u - the θ angle - equals

90◦. In the case k · u = 0, we obtain the dispersion relation from the general dispersion

equations (2.1.18), (2.1.19) with the coefficients (2.3.4)-(2.3.7), which are simplified to

a(ω,k) = ω2 − µ2 − k2 , (2.3.16)

b(ω,k) = ω2 − µ2 , (2.3.17)

c(ω,k) =
m2(ω2 − k2)u2

ω2
, (2.3.18)

d(ω,k) = 0 . (2.3.19)
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Then, the equation a(ω,k) = 0 gives

ω2
α(k) = µ2 + k2, (2.3.20)

but the dispersion equation (2.1.19) reads

(ω2 − µ2)
(
ω2 − µ2 − k2 +

µ2(ω2 − k2)u2

ω2

)
= 0 , (2.3.21)

and it provides three solutions

ω2
0(k) = µ2 , ω2

±(k) =
1

2

(
λ+ k2 ±

√(
λ+ k2

)2
+ 4µ2u2k2

)
, (2.3.22)

where, as previously, λ ≡ µ
√

1− u2. So, there are three pairs of modes of the opposite

sign.

To clarify a physical character of the solutions (2.3.20) and (2.3.22), we explicitly com-

pute the matrix Σ assuming that u = (0, 0, u) and k = (k, 0, 0). Then, one finds

Σ(ω,k) =


ω2 − µ2 0 0

0 ω2 − µ2 − k2 0

0 0 ω2 − µ2 − k2 + µ2(ω2−k2)u2

ω2

 , (2.3.23)

and its determinant equals

det[Σ(ω,k)] = (ω2 − µ2)(ω2 − µ2 − k2)
(
ω2 − µ2 − k2 +

µ2(ω2 − k2)u2

ω2

)
. (2.3.24)

The general dispersion equation (2.1.1), that is detΣ = 0, gives, as expected, the solutions

(2.3.22) and (2.3.20). The structure of the matrix (2.3.23) clearly shows that the mode

ω0(k) is longitudinal (the electric field is along the wave vector) and the remaining modes

ωα(k), ω±(k) are transverse (the electric field is perpendicular to the wave vector). The

solutions ω2
α(k), ω2

0(k) and ω2
+(k), which are all positive, correspond to stable real modes

while the solution ω2
−(k), which is negative, represents two imaginary modes - the Weibel

or filamentation unstable and overdamped modes. Let us also note that the solutions

ω2
0(k) and ω2

+(k) cross each other at k = µu/
√

1 + u2.
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2.3.1.3 Pure longitudinal electric field

In the two-stream system, which has unstable longitudinal electric modes, the chro-

modynamic field can be dominated after a sufficiently long time by the longitudinal

chromoelectric. That is why in this subsection we consider the case when B(ω,k) = 0

and E(ω,k) = k
(
k ·E(ω,k)

)
/k2, that is the electric field is purely longitudinal.

Then, the dispersion equation for purely longitudinal electric field is

εL(ω,k) = 0, (2.3.25)

where the longitudinal chromoelectric field is defined as:

εL(ω,k) ≡ εij(ω,k)
kikj

k2
. (2.3.26)

The next step is to calculate εL(ω,k) and solve the dispersion equation. The four roots

of the dispersion equation (2.3.25) are

ω2
±(k) =

1

k2

[
k2(k · u)2 + 2µ2

(
k2 − (k · u)2

)
(2.3.27)

± µ
√

2
(
k2 − (k · u)2

)(
4k2(k · u)2 + 4µ2

(
k2 − (k · u)2

)) ]
.

It is easy to see that 0 < ω+(k) ∈ R for any k. For k2(k·u)2 ≥ 4µ2
(
k2−(k·u)2

)
, the minus

mode is also stable, 0 < ω−(k) ∈ R, but for k ·u 6= 0 and k2(k ·u)2 < 4µ2
(
k2− (k ·u)2

)
,

one finds that ω−(k) is imaginary which is the well-known two-stream electric instability.
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2.3.2 General case

The dispersion equation for the A-modes (2.1.18) with the coefficient a(ω,k) given by

Eq. (2.3.4) has the simple solution

ω2
α(k) = µ2 + k2. (2.3.28)

Further on we discuss in full generality the dispersion equation (2.1.19), with the co-

efficients a, b, c, d given by the Eqs. (2.3.4)-(2.3.7). A crucial finding is that the ratio

ω2/(ω2 − (k · u)2)2 factors out from the right hand side of Eq. (2.1.19). Consequently,

we obtain a cubic dispersion equation

R3x
3 +R2x

2 +R1x+R0 = 0, (2.3.29)

where x ≡ ω2 and the coefficients R0, R1, R2, R3 are real numbers equal to

R0 = −((k · u)2 + µ2u2)
(
µ2(k · u)2 + k2((k · u)2 − µ2)

)
,

R1 = (k · u)2
(
(k · u)2 + 2k2 + µ2(1 + u2)

)
+ µ2(1− u2)(k2 + µ2) ,

R2 = −k2 − 2(k · u)2 + µ2(−2 + u2),

R3 = 1. (2.3.30)

As well known, see e.g. [66], all three roots of a cubic equation can be found algebraically.

Since the coefficients R0, R1, R2, R3 are real, the nature of roots is determined by the

discriminant in the form:

∆ = 18R0R1R2R3 − 4R3
2R0 +R2

1R
2
2 − 4R3R

3
1 − 27R2

0R
2
3. (2.3.31)

One distinguishes three cases:

• if ∆ > 0, the equation has three real roots;

• if ∆ = 0, there exist at least two roots which coincide, and they are all real;

• if ∆ < 0, the equation has one real root and two complex roots.
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Figure 2.2: The discriminant ∆ as function of k and θ for u2 = 1
2 .
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Figure 2.3: The discriminant ∆ as function of k and θ for u2 = 3
2 .
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One shows that the discriminant (2.3.31) computed with the coefficients (2.3.30) is

nonnegative for any k, if 0 ≤ u2 ≤ 1 but there is a domain of k where ∆ is negative

for u2 > 1. This is demonstrated in Figs. 2.2-2.3 where the discriminant is plotted as a

function of k and θ for u2 = 1
2 (Fig. 2.2) and u2 = 3

2 (Fig. 2.3). Since the stream velocity

is limited by the speed of light, we always have three real solutions of the dispersion

equation (2.3.29).

The real solutions of the cubic equation can be written down in the Viete’s trigonometric

form [66]

ω2
n = 2

√
−p
3

cos

[
1

3
arccos

[3√3q

2p
3
2

]
− 2πn

3

]
− R2

3R3
, (2.3.32)

where n = 1, 2, 3 and

p ≡ 3R3R1 −R2
2

3R2
3

, q ≡ 2R3
2 − 9R3R2R1 + 27R2

3R0

27R3
3

. (2.3.33)

These formulae assume that p < 0 and that the argument of the arccosine belongs to

[−1, 1]. These conditions are guaranteed as long as ∆ = −R4
3(4p3 + 27q2) > 0 which is

the case under consideration.

The complete set of dispersion curves of plasmons predicted by the formulae (2.3.28)

and (2.3.32) is shown in Figs. 2.4-2.7 for u2 = 3
4 and four different orientations of the

wave vector k. θ is the angle between k and n. The red (solid) lines are for ω2
α(k), the

green (dashed) for ω2
1(k), the blue (dotted) for ω2

2(k), and the orange (dashed-dotted)

for ω2
3(k). The light cone is presented as a light grey line.

As seen, the solution ω2
3(k) corresponds to the unstable and overdamped modes. We

also observe in the figures that the green (dashed) line representing ω2
1(k) approaches

the blue (dotted) line which refers to ω2
2(k). At θ = 90◦ the lines hit each other but they

do not cross. This is the phenomenon of mode coupling which is nicely explained in the

§64 of the textbook [65].
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Figure 2.4: Dispersion curves ω2(k) vs. k2 at u2 = 3
4 for θ = 0◦.
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Figure 2.5: Dispersion curves ω2(k) vs. k2 at u2 = 3
4 for θ = 30◦.
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Figure 2.6: Dispersion curves ω2(k) vs. k2 at u2 = 3
4 for θ = 60◦.
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Figure 2.7: Dispersion curves ω2(k) vs. k2 at u2 = 3
4 for θ = 90◦.
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How the general solutions (2.3.32) are related to those found in Sec. 2.3.1.1 - 2.3.1.2 for

k||u and k⊥u ? In the former case, we have the relations:

ω2
1(k) =

 ω2
0(k) for k < µu√

1+u2
,

ω2
+(k) for k ≥ µu√

1+u2
,

(2.3.34)

ω2
2(k) =

 ω2
+(k) for k < µu√

1+u2
,

ω2
0(k) for k ≥ µu√

1+u2
,

(2.3.35)

and ω2
3(k) = ω2

−(k). The crossing of the solutions ω2
0(k) and ω2

+(k) derived in the

previous section actually comes from the limit (k · u)→ 0. The general solutions shown

in Figs. 2.4-2.7 do not cross each other.

The special solution for k||u are related to the general solution as: ω2
1(k) = ω2

α(k),

ω2
2(k) = ω2

+(k) and ω2
3(k) = ω2

−(k).

2.3.3 Special case: u2 = 1

We consider here the case when the stream velocity u equals the speed of light. This

case is interesting both from physical and mathematical points of view. The dielectric

tensor of the two-stream system with u2 = 1 exactly coincides (under the replacement

u → n) with that of the plasma with an extremely prolate (infinitely elongated in one

direction) momentum distribution discussed in Sec. 2.7. Therefore, the plasmon spectra

are obviously the same. Nevertheless, when the spectrum is found as a limit u → 1,

the mode crossing observed in the extremely prolate plasma gets a different physical

meaning. As explained below, instead of mode crossing we rather have the extreme

mode coupling mentioned in the previous section. The dispersion equation (2.3.29) for

u2 = 1 is also interesting mathematically. The form of the solutions (2.3.32) with the

trigonometric and inverse trigonometric functions is required, if we deal with the so-

called casus irreducibilis, when three real and distinct roots of a cubic equation cannot

be expressed in terms of real radicals. However, a cubic equation, which has three real

and distinct roots, can be sometimes reduced to a quadratic equation by means of the

rational root test. Then, all three real roots of the cubic equation are expressed by real

radicals and the Viete’s trigonometric form is an unnecessary complication.

Since the coeffcient R3 in Eq. (2.3.29) equals unity, see Eq. (2.3.30), the rational root

test suggests to look for a root of the equation among the factors of R0 given by the

formula (2.3.31). When u2 = 1, there is a factor µ2 + (k ·u)2 which is indeed the root of
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the equation. Consequently, the cubic equation (2.3.29) is reduced to a quadratic one,

which is easily solved, and the three solutions read

ω2
0(k) = µ2 + (k · u)2, (2.3.36)

ω2
±(k) =

1

2
(k2 + (k · u)2 (2.3.37)

±
√

k4 + (k · u)4 + 4µ2k2 − 4µ2(k · u)2 − 2k2(k · u)2).

The solutions ω2
0(k) and ω2

+(k) are positive for any k and consequently they represent

real modes. The modes ω2
0(k) and ω2

+(k) cross each other at k = µ√
2 sin θ

. The solution

ω2
−(k) is negative for k < µ| tan θ| and positive otherwise. It represents the Weibel

unstable mode and its overdamped partner for sufficiently small wave vectors. When

k⊥n or θ = 90◦, the unstable mode exists for all values of k. When k||n or θ = 0◦ the

configuration is cylindrically symmetric and there is no instability.

Comparing the solutions (2.3.36) and (2.3.37) to the general ones given by the formula

(2.3.32), one realizes that

ω2
1(k) =

 ω2
0(k) for k < µ√

2 sin θ
,

ω2
+(k) for k ≥ µ√

2 sin θ
,

(2.3.38)

ω2
2(k) =

 ω2
+(k) for k < µ√

2 sin θ
,

ω2
0(k) for k ≥ µ√

2 sin θ
,

(2.3.39)

and ω2
3(k) = ω2

−(k). The crossing of the solutions ω2
0(k) and ω2

+(k) is actually an artifact

of the limit u2 → 1. The physical solutions are the combination of Eqs. (2.3.38) and

(2.3.39).

The complete spectrum of plasmons, which includes ω2
1(k), ω2

2(k), ω2
3(k) and ω2

α(k), is

shown in Figs. 2.8-2.11 for four different orientations of the wave vector k. The red

(solid) lines are for ω2
α(k), the green (dashed) for ω2

1(k), the blue (dotted) for ω2
2(k), and

the orange (dashed-dotted) for ω2
3(k). The light cone is represented as a light grey line.

The qualitative difference, when compared to the case u2 < 1, occurs when θ → 0. Then,

the solutions ω2
2(k) and ω2

3(k) merge into one double solution ω2
2(k) = ω2

3(k) = k2.
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Figure 2.8: Dispersion curves ω2(k) vs. k2 at u2 = 1 for θ = 0◦.
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Figure 2.9: Dispersion curves ω2(k) vs. k2 at u2 = 1 for θ = 30◦
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Figure 2.10: Dispersion curves ω2(k) vs. k2 at u2 = 1 for θ = 60◦.
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Figure 2.11: Dispersion curves ω2(k) vs. k2 at u2 = 1 for θ = 90◦.
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2.4 Anisotropic plasma as deformed isotropic one

2.4.1 Momentum distributions

The dielectric tensor given by Eq. (2.1.3) or (2.1.4) is fully determined by the momen-

tum distribution of plasma constituents. Romatschke and Strickland [43] introduced an

Ansatz to model anisotropic distributions by deforming isotropic ones. They considered

a momentum distribution of the form

fξ(p) = Cξfiso

(√
p2 + ξ(p · n)2

)
, (2.4.1)

where fiso(|p|) is an isotropic distribution, Cξ is a normalization constant, n is a unit

vector, and the parameter ξ ∈ (−1,∞) controls the shape of the distribution. When

ξ = 0 the distribution is isotropic. The vector n is usually chosen along the beam

direction, so that pL ≡ p · n and pT ≡ |p − (p · n)n|. For −1 < ξ < 0 the distribution

is elongated in the direction of n - it is prolate. For ξ > 0 the distribution is squeezed

in the direction of the vector n - it is oblate - becoming more and more oblate as the

parameter ξ increases.

There is some freedom in choosing the normalization constant Cξ of the distribution

(2.4.1). Initially Romatschke and Strickland put Cξ = 1 [43] but in a later publication [54]

they used Cξ =
√

1 + ξ, which is equivalent to normalizing the anisotropic distribution

to the isotropic one, so that∫
d3p

(2π)3
fξ(p) =

∫
d3p

(2π)3
fiso(|p|). (2.4.2)

We adopt a different normalization. In case of massless partons, the whole spectrum of

collective excitations depends on a single mass parameter which is usually chosen to be

m2 ≡ g2

∫
d3p

(2π)3

fξ(p)

|p|
. (2.4.3)

When ξ = 0 (the momentum distribution is isotropic), the parameter m reduces to the

usual Debye mass (2.2.4). To compare collective modes at different anisotropies, it is

natural to use a mass parameter that is independent of ξ. To accomplish this we require

the momentum distribution (2.4.1) to be normalized so that∫
d3p

(2π)3

fξ(p)

|p|
=

∫
d3p

(2π)3

fiso(|p|)
|p|

, (2.4.4)
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which determines the normalization constant as

Cξ =


√
|ξ|

Arctanh
√
|ξ|

for − 1 ≤ ξ < 0,

√
ξ

Arctan
√
ξ

for 0 ≤ ξ.
(2.4.5)

In addition to Eq. (2.4.1), which we refer to as the ξ-distribution, we also consider a

distribution of the form

fσ(p) ≡ Cσfiso

(√
(σ + 1)p2 − σ(p · n)2

)
, (2.4.6)

where σ ≥ −1, which we will call the σ-distribution. For 0 > σ ≥ −1 the distribution

(2.4.6) is oblate, for σ = 0 it is isotropic, for σ > 0 it is prolate, increasing in prolateness

as the parameter σ grows. If the normalization constant Cσ is determined by requiring

that the distributions fσ(p) and fiso(|p|) satisfy the condition analogous to Eq. (2.4.2),

one finds Cσ = σ + 1. We will require the condition analogous to (2.4.4), so that the

mass parameter (2.4.3) is independent of σ, which gives

Cσ =


√
|σ(σ+1)|

Arctan
√
| σ
σ+1
| for − 1 ≤ σ < 0,

√
σ(σ+1)

Arctanh
√

σ
σ+1

for 0 ≤ σ.
(2.4.7)

We are particularly interested in two special cases which are easier to deal with analyti-

cally: the extremely prolate and extremely oblate distributions. The latter is proportional

to δ(n · p) = δ(pL) and can be obtained from the ξ-distribution (2.4.1) by taking the

limit ξ →∞ (it does not correspond to the limit σ → −1 of the σ-distribution (2.4.6)).

The extremely prolate distribution is proportional to δ(p2 − (n · p)2) ∼ δ(pT ) and cor-

responds to the limit σ → ∞ of the σ-distribution (but not the limit ξ → −1 of the

ξ-distribution).

In practice, the simplest way to obtain the extremely oblate and extremely prolate

distributions is not to take the limits described above, but to start from the forms

fξ=∞(p) = δ(pL)h(pT ), (2.4.8)

fσ=∞(p) = δ(pT )
|pL|
pT

g(pL) , (2.4.9)

where, as previously, pL ≡ p · n and pT ≡ |p − (p · n)n|, and determine the functions

h(pT ) and g(pL) from the normalization condition analogous to Eq. (2.4.4):

m2 =
g2

4π2

∫ ∞
0

dpT h(pT ) =
g2

4π2

∫ ∞
−∞

dpL g(pL). (2.4.10)
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Using any one of the momentum distributions (2.4.1), (2.4.6), (2.4.8), or (2.4.9), the

dielectric tensor (2.1.3) or (2.1.4) is uniquely defined and the mass (2.4.3) is the only

dimensional parameter which enters the problem. We define our system of units by

rescaling all dimensional quantities by the appropriate power of the mass m, which is

numerically equivalent to setting m = 1.

2.4.2 Coefficients α, β, γ, δ

Starting with the decomposition (2.1.12) and solving the set of equations analogous to

(2.1.9), one finds the coefficients α, β, γ, δ:

α(ω,k) =
g2

2

∫
d3p

(2π)3

f(p)

|p|

[
1 +

k2 − ω2

(ω − k · v + i0+)2

(
1− (nT · v)2

n2
T

− (k · v)2

k2

)]
,

(2.4.11)

β(ω,k) =
g2

2

∫
d3p

(2π)3

f(p)

|p|

[
1 +

2(k · v)

ω − k · v + i0+
+

(k2 − ω2)(k · v)2

k2(ω − k · v + i0+)2

]
,

(2.4.12)

γ(ω,k) =
g2

2

∫
d3p

(2π)3

f(p)

|p|

[
k2 − ω2

(ω − k · v + i0+)2

(
− 1 + 2

(nT · v)2

n2
T

+
(k · v)2

k2

)]
,

(2.4.13)

δ(ω,k) =
g2

2

∫
d3p

(2π)3

f(p)

|p|

[
1

ω − k · v + i0+

nT · v
n2
T

+
k2 − ω2

(ω − k · v + i0+)2

(nT · v)(k · v)

n2
Tk2

]
. (2.4.14)

An important advantage of a momentum distribution in the form (2.4.1) or (2.4.6) is

that, for massless plasma constituents, the integral over the magnitude of the momentum

and the angular integrals factorize. The momentum distributions can be written as

fξ(p) = Cξfiso(Mξ|p|), Mξ ≡
√

1 + ξ(n · v)2, (2.4.15)

fσ(p) = Cσfiso(Mσ|p|), Mσ ≡
√

1 + σ + σ(n · v)2, (2.4.16)

and the functions Mξ and Mσ depend only on the angles θ and φ. Introducing the

variable p̃ = Mξ/σ|p| and taking the integrals over p̃, which produces the factors m2, the

formulae (2.4.11), (2.4.12), (2.4.13) and (2.4.14) get the form

Xξ/σ =
m2

2

∫
dΩ

4π

FX(θ, φ)

M2
ξ/σ

, (2.4.17)
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where X stands for α, β, γ or δ and the functions FX , which equal the expressions in

the square brackets in Eqs. (2.4.11)-(2.4.14), depend on the angles.

The azimuthal integrals can be done analytically in a straightforward manner. The polar

integration can also be done analytically, but the resulting expressions are complicated

and not very enlightening. In Appendix A.2 we present analytic expressions for the

coefficients α, β, γ, δ for the ξ-distribution (2.4.1) and σ-distribution (2.4.6) in which

only the azimuthal integration has been done. In the same appendix, we also show some

numerical results for the four components of the polarization tensor, after the azimuthal

integration is done. In the sections below, we give analytic expressions (after performing

both angular integrations) for α, β, γ, δ for some special cases where the results are

relatively simple.

The analytic structure of the coefficients α and β for finite ξ or σ is the same as in

the isotropic case. For real valued ω all four coefficients are complex for ω2 < k2 and

real for ω2 > k2, and for imaginary valued ω all four coefficients are real. This can

be understood as follows. From the formulae (2.4.11)-(2.4.14) we see that for real ω,

an imaginary contribution to any component of the polarization tensor comes from the

denominators ω−k ·v+i0+ or (ω−k ·v+i0+)2 where the Landau infinitesimal elements

i0+ are needed to define the integrands when ω = k ·v. If ω2 > k2, the denominators are

always positive and the polarization tensor is pure real. If ω2 < k2, the denominators

produce an imaginary part due to the i0+ prescription. When ω is imaginary, it is easy to

see that the complex conjugate of every integrand in the formulae (2.4.11)-(2.4.14) equals

the original integrand with the change p → −p. Changing the sign of the integration

variable and using the fact that the momentum distributions under consideration are

even functions of p, one finds that the polarization tensor is pure real for imaginary ω.

We summarize this information as

ω ∈ R & ω2 > k2 ⇒ {α, β, γ, δ} ∈ R,
ω ∈ R & ω2 < k2 ⇒ {α, β, γ, δ} ∈ C,
ω = iγ & γ ∈ R ⇒ {α, β, γ, δ} ∈ R.

(2.4.18)
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2.5 Weakly anisotropic plasma

This section shows that the spectrum of plasmons changes qualitatively when an in-

finitesimal anisotropy is introduced. As we will demonstrate in Sec. 2.6, all qualitative

features of the weakly anisotropic plasma survive in case of strong anisotropy. Since a

weakly anisotropic system can be treated analytically to a large extent, this case deserves

particularly careful analysis.

To derive the spectrum of collective modes in a weakly anisotropic plasma, we use the

ξ-distribution (2.4.1) with the assumption ξ � 1 which gives

fξ(p) =
(

1 +
ξ

3

)
fiso(p) +

ξ

2

dfiso(p)

dp
p (v · n)2, (2.5.1)

where we have taken into account that the normalization constant (2.4.5) equals

Cξ = 1 +
ξ

3
+O(ξ2). (2.5.2)

The distribution (2.5.1) is weakly prolate for ξ < 0 and weakly oblate for ξ > 0.

Using the formula (2.5.1), the coefficients α, β, γ, δ given by Eqs. (2.4.11)-(2.4.14)

can be computed analytically. For α and β there are contributions of order ξ0 which

are just the isotropic results of the previous section. All four functions α , β , γ , δ

have contributions of order ξ. Since the coefficient δ(ω,k) enters the dispersion equation

(2.1.19) quadratically, it does not contribute to linear order in ξ and it can be neglected

and the second dispersion equation (2.1.19) factors into two simpler equations which are

1

ω2
∆−1
B (ω,k) = 0, ∆−1

B (ω,k) = b(ω,k) = ω2 − β(ω,k), (2.5.3)

∆−1
C (ω,k) = a(ω,k) + c(ω,k) = ω2 − k2 − α(ω,k)− γ(ω,k) = 0. (2.5.4)

We will refer to the solutions of these equations as B-modes and C-modes, respectively.

In the B-mode equation we have again removed two zero solutions. So that we have the

three dispersion equations of A-modes (2.1.18), B-modes (2.5.3) and C-modes (2.5.4).
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The coefficients α, β, γ are computed as

α(ω,k) =
(

1 +
ξ

3

)
αiso(ω,k)− ξm

2

8

{
8

3
cos2 θ +

2

3

(
5− 19 cos2 θ

)ω2

k2
− 2
(
1− 5 cos2 θ

)ω4

k4

+

[
1− 3 cos2 θ −

(
2− 8 cos2 θ

)ω2

k2
+
(

1− 5 cos2 θ
)ω4

k4

]
ω

k
ln
(ω + k

ω − k

)}
,

(2.5.5)

β(ω,k) =
(

1 +
ξ

3

)
βiso(ω,k)− ξm2

{(
− 2

3
+ cos2 θ

)ω2

k2
+ (1− 3 cos2 θ)

ω4

k4

+
1

2

[
(1− 2 cos2 θ)

ω2

k2
− (1− 3 cos2 θ)

ω4

k4

]
ω

k
ln
(ω + k

ω − k

)}
, (2.5.6)

γ(ω,k) = −ξm
2

4
sin2 θ

[
− 4

3
+

10

3

ω2

k2
− 2

ω4

k4
+
(

1− 2
ω2

k2
+
ω4

k4

)ω
k

ln
(ω + k

ω − k

)]
, (2.5.7)

where αiso, βiso are given by Eqs. (2.2.2), (2.2.3).

As in the case for the isotropic plasma, the dispersion relations cannot be solved an-

alytically for arbitrary k. When k2 � ω2, the functions α(ω,k), β(ω,k), γ(ω,k) are

approximated as

α(ω,k) = m2

{
1

3

(
1− ξ

15

)
+

1

5

[1

3
+
ξ

7

(1

9
+ cos2 θ

)] k2

ω2
+O

( k4

ω4

)}
, (2.5.8)

β(ω,k) = m2

{
1

3

[
1 +

ξ

5

(
− 1

3
+ cos2 θ

)]
+

1

5

[
1 +

ξ

7

(1

3
− cos2 θ

)] k2

ω2
+O

( k4

ω4

)}
, (2.5.9)

γ(ω,k) = ξ m2 sin2 θ
[ 1

15
− 4 k2

105ω2
+O

( k4

ω4

)]
. (2.5.10)

In the next three subsections we discuss solutions of the dispersion equations (2.1.18),

(2.1.20), and (2.5.4) using the coefficients (2.5.5)-(2.5.7) or (2.5.8)-(2.5.10).

2.5.1 A-modes

As we show in Sec. 2.9, where the Nyquist analysis is performed, the A-mode dispersion

equation (2.1.18) has four solutions when

k2 − ξ m
2

3
cos2 θ < 0 (2.5.11)
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and two solutions otherwise. The condition (2.5.11) is never fulfilled for the prolate

plasma (ξ < 0) and it is fulfilled for any oblate momentum distribution (ξ > 0) when

k < kA ≡
√
ξ

3
m| cos θ|. (2.5.12)

We solve here the A-mode dispersion equation analytically, by looking at certain sim-

plifying limits, and show that the results agree with the those of the Nyquist analysis

performed in Sec. 2.9. We first look for real A-modes which satisfy ω2 � k2. In this limit

α(ω,k) is approximated by the formula (2.5.8) and Eq. (2.1.18) is solved by

ω2(k) =
m2

3

(
1− ξ

15

)
+

6

5

[
1 +

ξ

14

( 4

15
+ cos2 θ

)]
k2 +O

( k4

m2

)
, (2.5.13)

which reduces to the well-known result for the transverse plasmon (2.2.14) when ξ = 0.

The plasmon mass, which is given by the first term on the right side of Eq. (2.5.13),

depends on the anisotropy parameter ξ but is independent on the orientation of the wave

vector k. When compared to isotropic plasma, the plasmon mass is smaller for oblate

momentum distributions (ξ > 0) and bigger for prolate ones (ξ < 0).

We can also look for pure imaginary solutions by substituting ω = iγ with γ ∈ R and

assuming γ2 � k2. Using the approximate formula

ω + k

ω − k
=
γ2 − k2

γ2 + k2
− i 2γk

γ2 + k2

γ2�k2
≈ exp

(
− iπ γ

|γ|

)
, (2.5.14)

the coefficient α(ω,k) becomes

α(ω,k) = −1

3
ξm2 cos2 θ +

π

4

[
1− ξ

2

(1

3
− 3 cos2 θ

)]
m2 |γ|

k
+O

(γ2

k2

)
, (2.5.15)

and the dispersion equation (2.1.18) is written in the form

γ2 +
λ

k
|γ| − k2

A + k2 = 0, (2.5.16)

where kA is defined by the formula (2.5.12) and

λ ≡ π

4

[
1− ξ

2

(1

3
− 3 cos2 θ

)]
m2. (2.5.17)

Eq. (2.5.16) has no roots for an isotropic or prolate system, since k2
A ≤ 0 when ξ ≤ 0.

For oblate systems, ξ and k2
A are positive and there are two solutions which read

γ(k) = ±1

2

(√λ2

k2
+ 4(k2

A − k2)− λ

k

)
. (2.5.18)
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Equations (2.5.12), (2.5.17) show that in the limit of weak anisotropy λ � k2
A, and

therefore the expression (2.5.18) can be approximated as

γ(k) ≈ ± 1

λ
k(k2

A − k2). (2.5.19)

The solutions (2.5.18) or (2.5.19) represent the unstable and overdamped transverse

modes which exist only for oblate plasmas (ξ > 0) provided the condition (2.5.12) is

satisfied.

2.5.2 B-modes

The B-mode dispersion equation (2.5.3) describes the longitudinal modes. We consider

the limit ω2 � k2 and find two analytical solutions. The coefficient β(ω,k) is approxi-

mated by the formula (2.5.9) and the dispersion equation (2.5.3) is solved by

ω2(k) =
m2

3

[
1 +

ξ

5

(
− 1

3
+ cos2 θ

)]
+

3

5

[
1 +

4ξ

35

(
1− 3 cos2 θ

)]
k2 +O

( k4

m2

)
, (2.5.20)

which reduces to the well-known result for the longitudinal plasmon (2.2.15) when ξ = 0.

The first term on the right side gives the plasmon mass which depends on the anisotropy

parameter ξ and the orientation of wave vector k. The formula analogous to (2.2.17)

shows that the longitudinal mode approaches the light cone as k →∞.

2.5.3 C-modes

The C-mode dispersion equation (2.5.4) has the richest structure. In Sec. 2.9.2 we show

that the C-mode dispersion equation has four solutions when

k2 + ξ
m2

3

(
1− 2 cos2 θ

)
< 0, (2.5.21)

and two solutions otherwise. The condition (2.5.21) can be fulfilled for oblate plasma

(ξ > 0) when 1/2 < cos2 θ and for prolate plasma (ξ < 0) when 1/2 > cos2 θ. In both

cases the wave vector must satisfy

k < kC ≡ m<
√
ξ

3

(
2 cos2 θ − 1

)
. (2.5.22)

When the argument of the square root is negative, the real part of the root is zero and

the critical wave vector kC vanishes.

In the rest of this subsection we look at specific limits and solve the C-mode dispersion

equation analytically. The results agree with those of the Nyquist analysis performed in
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Sec. 2.9. We first look for real solutions in the long wavelength limit (ω2 � k2) when

the coefficients α(ω,k) and γ(ω,k) are approximated by the formulae (2.5.8), (2.5.10).

The dispersion equation (2.5.4) is solved by

ω2(k) =
m2

3

[
1 +

ξ

5

(2

3
− cos2 θ

)]
+

6

5

[
1− ξ

5

(23

42
− cos2 θ

)]
k2 +O

( k4

m2

)
, (2.5.23)

which reduces to the well-known transverse plasmon (2.2.14) when ξ = 0. The plasmon

mass, which is given by the first term on the right side, depends on the anisotropy

parameter ξ and on the orientation of k.

One also finds pure imaginary solutions by substituting ω = iγ with γ ∈ R and assuming

γ2 � k2. The dispersion equation and its solutions have the same form as in the previous

section, see Eqs. (2.5.16), (2.5.18), and (2.5.19), but the coefficient λ is now defined as

λ ≡ π

4

[
1− ξ

2

(7

3
− 5 cos2 θ

)]
m2, (2.5.24)

and kA is replaced by kC given in Eq. (2.5.22).

 

   0.05 0.150.1

0.0005

0.001

        ξ=-0.1  θ=60°         

 0  0.5  2.0 1.5 1.0

 2.0

 1.5

 1.0

 0.5

0

Figure 2.12: Dispersion curves of plasmons in weakly prolate plasma with ξ = −0.1
for θ = 60◦.
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Figure 2.13: Dispersion curves of plasmons in weakly oblate plasma with ξ = 0.1 for
θ = 30◦.
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Figure 2.14: Dispersion curves of plasmons in weakly oblate plasma with ξ = 0.1 for
θ = 60◦.
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2.5.4 Discussion

We have found a complete spectrum of plasmons in weakly anisotropic QGP solving nu-

merically the dispersion equations (2.1.18), (2.5.3), and (2.5.4). The numerical solutions

agree very well with the approximated analytical ones (2.5.20), (2.5.13), (2.5.18) and

(2.5.23) in the domains of their applicability. Fig. 2.12 shows the spectrum for weakly

prolate plasma (ξ = −0.1) at θ = 60◦. Figs. 2.13 and 2.14 demonstrate the spectra for

weakly oblate plasma (ξ = 0.1) at θ = 30◦ and θ = 60◦. The main part of each figure

shows the dispersion curves of the positive real modes and the inserts present the posi-

tive imaginary solutions.

In Figs. 2.12-2.14 and through the whole chapter when we plot real solutions we show

only the positive partner, and for imaginary solutions we show the positive imaginary

part of the frequency. The light cone is always represented as a thin light grey dotted

line. We also use the following notation for the dispersion curves:

• red (solid) - real A-modes denoted ωα,

• green (dashed) - real G-modes, which stay above the light cone, denoted ω+,

• blue (dotted) - real G-modes, which cross the light cone, denoted ω−,

• orange (dotted) - imaginary A-modes denoted ωαi = iγα,

• pink (solid) - imaginary G-modes denoted ω−i = iγ−.

For weakly prolate and oblate systems, real A-, B- and C-modes exist for all wave vectors

and depend only weakly on the angle. The real A- and C-modes look very much like the

isotropic transverse real modes. The real B-mode looks like the isotropic longitudinal

real mode.

In addition to the real modes, for weakly prolate plasma there is an imaginary C-mode,

seen in Fig. 2.12, which exists for k < kC . The critical wave vector kC is maximal for

θ = 90◦. When θ decreases, kC also decreases until it reaches zero at θ = 45◦ and the

imaginary C-mode disappears. In a weakly oblate system there are two imaginary modes

seen in Fig. 2.14 when k < kC < kA. Both kA and kC are maximal when θ = 0◦. As θ

increases from 0◦, kA and kC decrease. At θ = 45◦, kC goes to zero and the imaginary

C-mode disappears. The regime of the imaginary A-mode shrinks to zero at θ = 90◦.

In comparison with the spectra of an isotropic system, the weakly anisotropic plasma

exhibits the following important differences.
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• The transverse mode, which is doubled in the isotropic case, is now split into two

slightly different modes, the A-mode and the C-mode, which are given in Eqs.

(2.5.13), or (2.5.23). In Figs. 2.12-2.14 the curves that correspond to these modes

are represented by the red and green curves which lie almost on top of each other.

• In isotropic plasma longitudinal and transverse plasmons have the same plasma

frequency ωp = m/
√

3, but in anisotropic plasma there are three different minimal

frequencies for the three real modes.

• In isotropic plasma there are no imaginary solutions. In anisotropic plasma the

number of imaginary solutions depends on the magnitude and orientation of the

wave vector k. In prolate plasma the number of imaginary solutions is zero or two

(one pair) and in oblate plasma there are zero, two (one pair) or four (two pairs)

imaginary modes.

Using the formulae (2.5.12), (2.5.22), the number of modes can be written as

A−modes :

 2 + 2Θ(kA − k) for oblate plasma,

2 for prolate plasma,
(2.5.25)

B −modes : 2, (2.5.26)

C −modes : 2 + 2Θ(kC − k), (2.5.27)

which show that there is a maximum of 8 solutions for prolate plasma and 10 for oblate

plasma.

The analysis presented in this section could equally well have been done using the σ-

distribution (2.4.6) in the limit |σ| � 1. This would reproduce the results expressed by

Eqs. (2.5.11), (2.5.21) with ξ → −σ. Since the weakly prolate and weakly oblate systems

correspond to σ > 0 and σ < 0, respectively, the number of modes in Eqs. (2.5.25)-

(2.5.27) is obviously reproduced.

There is no anisotropy threshold for an existence of unstable modes, and even an in-

finitesimal anisotropy produces an instability. However, when ξ → 0 (or σ → 0) the

growth rate of instability (γ) decreases and the domain of wave vectors, for which un-

stable modes exist (bounded by kA or kC), shrinks. In this sense, the system becomes

less and less unstable, as it tends to isotropy. When the effect of inter-parton collisions

is taken into account [67], the growth rates of unstable modes are reduced and systems

of small anisotropy are effectively stabilized.
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2.6 Finite anisotropy

When the anisotropy parameter is not small, the coefficients α, β, γ, δ of the decomposi-

tion (2.1.12) and the solutions of the dispersion equations must be computed numerically.

However, the spectrum of plasmons has the same structure as in the case of the weakly

anisotropic plasma discussed in the previous section - the number of modes is the same

and the behavior of the dispersion curves is very similar.

We consider both the ξ-distribution (2.4.1) and the σ-distribution (2.4.6), which to-

gether describe deformations of an isotropic distribution with arbitrary prolateness and

oblateness. In Appendix A.2 we give analytic expressions for the components α, β, γ, δ

of the polarization tensor with the polar integrals unevaluated, and show some graphs of

the results after the polar integrals are done. For finite ξ or σ, the analytic structure of

the coefficients α, β is the same as in the isotropic case. For real valued ω all coefficients

are complex for ω2 < k2 and real for ω2 > k2, and for imaginary valued ω all four

coefficients are real, see Eq. (2.4.18).

If the anisotropy parameter is not assumed small, the coefficient δ cannot be neglected,

which means that the dispersion equation for the G-modes (2.1.19) does not factorize

into equations (2.5.3), (2.5.4). However it can be factorized as

∆−1
G =

(
ω2 − Ω2

+(ω, k)
)(
ω2 − Ω2

−(ω, k)
)

= 0, (2.6.1)

where

Ω2
±(ω, k) ≡ 1

2

(
α+ β + γ + k2 ±

√
(α− β + γ + k)2 + 4k2n2

T δ
2
)
. (2.6.2)

The square root in Eq. (2.6.2) is undefined if its argument is pure real and negative.

When all coefficients of the polarization tensor are real, the argument of the root is

positive definite. When these coefficients are complex, the root argument is also complex.

Therefore, there is no case for which the argument of the root is real and negative, which

means that one can find the dispersion relations by solving the equations

ω = ±
(
Ω±(ω, k)

)
self-consistently.

Characteristic examples of the complete spectra of plasmons in prolate and oblate plas-

mas, computed with the ξ− and σ−distribution, respectively, are shown in Figs. 2.15-2.16

and 2.17-2.18 for fixed values of θ. For both prolate and oblate cases, there are six (three

pairs) of real modes for all k which change slowly with θ. For prolate plasmas, there is

at most one pair of imaginary modes. For small angles these modes are absent. As the

angle increases, the imaginary modes appear at small k, and extend to larger and larger

k as the angle increases. In oblate systems, there are at most two pairs of imaginary
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modes. They are both absent at θ = 90◦. When the angle decreases, the A-modes shows

up first, and both pairs extend to larger and larger k as θ continues to decrease. All of

these features are the same as for the weakly anisotropic plasma discussed in Sec. 2.5.
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Figure 2.15: Dispersion curves of plasmons in prolate plasma with σ = 10 for θ = 15◦.
Here is a green curve that is almost completely covered by the red curve.
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Figure 2.16: Dispersion curves of plasmons in prolate plasma with σ = 10 for θ = 80◦.
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Figure 2.17: Dispersion curves of plasmons in oblate plasma with ξ = 10 for θ = 15◦.
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Figure 2.18: Dispersion curves of plasmons in oblate plasma with ξ = 10 for θ = 60◦.
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2.7 Extremely prolate plasma

The extremely prolate system with the momentum distribution (2.4.9) is the easiest case

of all to study analytically. It was analysed in [44] using a different method. The coeffi-

cients α, β, γ, δ and the inverse propagator Σ defined by Eq. (2.1.2) can be computed

analytically not even specifying the coordinate system. Since the velocity v of a massless

parton is v = n for p · n > 0 and v = −n for p · n < 0, the matrix Σ is found to be

Σij(ω,k) = (ω2 − m2

2
− k2)δij + kikj − m2k · n

2
(
ω2 − (k · n)2

)(kinj + nikj)

−
m2
(
ω2 + (k · n)2

)
(k2 − ω2)

2
(
ω2 − (k · n)2

)2 ninj , (2.7.1)

and the coefficients α, β, γ, δ are

α(ω,k) =
m2

2
, (2.7.2)

β(ω,k) =
m2

2
+

m2(k · n)2

ω2 − (k · n)2
+
m2
(
ω2 + (k · n)2

)
(k2 − ω2)

2
(
ω2 − (k · n)2

)2 (k · n)2

k2
, (2.7.3)

γ(ω,k) =
m2(ω2 + (k · n)2)(k2 − ω2)

2(ω2 − (k · n)2)2

(
1− (k · n)2

k2

)
, (2.7.4)

δ(ω,k) =
m2(k · n)

2
(
ω2 − (k · n)2

) +
m2
(
ω2 + (k · n)2

)
(k2 − ω2)

2
(
ω2 − (k · n)2

)2 (k · n)

k2
. (2.7.5)

The dispersion equation for the A-modes (2.1.18) has the simple solution

ω2
α(k) =

m2

2
+ k2. (2.7.6)

Although the dispersion equation for the G-modes (2.1.19) is rather complicated, it also

has three relatively simple solutions

ω2
2(k) =

m2

2
+ (k · n)2, (2.7.7)

ω2
±(k) =

1

2

(
k2 + (k · n)2 (2.7.8)

±
√

k4 + (k · n)4 + 2m2k2 − 2m2(k · n)2 − 2k2(k · n)2
)
.

The modes ωα, ω2 and ω+ are real and exist for any k. The solutions ωα and ω+ lie

always above the light cone. The mode ω2 lies above the light cone for k < m√
2 sin θ

and

below for k > m√
2 sin θ

. The modes ω+ and ω2 cross each other at k = m
2 sin θ .
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The solution ω− can be either pure real or pure imaginary. It is imaginary for

k < kpG ≡
m√

2
| tan θ|, (2.7.9)

and real for k > kpG. The solution iγ, where γ ≡ |ω−|, is the Weibel unstable mode,

and −iγ is its overdamped partner. When k ⊥ n or θ = 90◦, the unstable mode exists

for all values of k, as kpG given by Eq. (2.7.9) goes to infinity. When k||n or θ = 0◦ the

configuration is cylindrically symmetric and there is no instability, since kpG → 0. The

real modes are ω2
α(k) = ω2

2(k) = m2/2 + k2 and ω2
+(k) = ω2

−(k) = k2 in this limit. The

behaviour of the unstable G-mode is shown in Fig. 2.19.

2
)(2

m

k−−
ω

0

0.5

1.0

0

2

4

0

1.0

0.5

θcos
m
k

Figure 2.19: Unstable mode for the extremely prolate plasma: −ω2
−(k) as a function

of k and cos θ in the domain where ω2
−(k) < 0. The angle θ is between the vectors k

and n.

The spectra of plasmons in an extremely prolate plasma are shown in Figs. 2.20-2.23

for different orientations of the wave vector k. The imaginary mode emerges at finite θ

and it extends to infinite k at θ = 90◦. The mode ωα(k) is independent of θ, and ω2(k)

changes qualitatively when θ grows from 0◦ to 90◦. The mode ω+(k) is massless, that

is ω+(0) = 0, and its dispersion curve is everywhere concave, in contrast to other real

dispersion curves which are usually convex.

There is a qualitative difference between the plasmon spectra of the extremely prolate

system, which is discussed here, and that of a system with prolateness characterized by

the parameter σ � 1. In extremely prolate plasma, the mode ω− given by the formula
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(2.7.8) exists for any wave vector k: it is real for k > kpG and imaginary for k < kpG.

For a very large but finite σ, only the imaginary piece at k < kpG is found. One could

suspect that a solution has been missed in the numerical calculation, but the Nyquist

analysis, which is presented in Sec. 2.9.3, proves that this is not the case. The key point

is that when σ → ∞ there is a change in the analytic properties of the left-hand-side

of the G-mode dispersion equation (2.1.19) as a function of ω. The cut singularity at

ω ∈ [−k, k] is replaced by double poles at ω = ±k · n and the number of modes in

extremely prolate plasma equals 8 for any k.

Another important point is that the limit of extreme prolateness is approached very

slowly as σ → ∞. To illustrate this point we consider, as an example, the coefficient

α(ω,k = 0) which is the mass of A−mode. When computed with the σ−distribution

(2.4.6) we obtain

ασ(ω,k = 0) =
m2

8

Cσ
σ

[(√ σ

σ + 1
+

√
σ + 1

σ

)
ln
(√σ + 1 +

√
σ√

σ + 1−
√
σ

)
− 2
]
, (2.7.10)

and for σ � 1 we have

ασ(ω,k = 0) ≈ m2

2

(
1− 1

ln 4σ

)
. (2.7.11)

From this expression we find that even for σ as large as 104, the coefficient differs from its

extremely prolate value at σ →∞ by 10%. As will be shown in the subsequent section,

when ξ → ∞ the parameter αξ(ω,k = 0) approaches the extremely oblate value much

more quickly.
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Figure 2.20: Dispersion curves of plasmons in extremely prolate plasma for θ = 0◦.
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Figure 2.21: Dispersion curves of plasmons in extremely prolate plasma for θ = 15◦.
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Figure 2.22: Dispersion curves of plasmons in extremely prolate plasma for θ = 30◦.
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Figure 2.23: Dispersion curves of plasmons in extremely prolate plasma for θ = 90◦.
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2.8 Extremely oblate plasma

In this section we consider the second limiting case - the extremely oblate plasma with

the momentum distribution given by Eq. (2.4.8). The coefficients α, β, γ, δ, which have

a much more complicated structure than for the extremely prolate plasma, equal

α(ω,k) =
m2

2(1− x2)

[
ω̂2 − x2 +

ω̂(1− ω̂2)

r+r−

]
, (2.8.1)

β(ω,k) =
m2ω̂2

2

[
− 1 +

ω̂(2x2 + ω̂2 − 1)

r3
+r

3
−

]
, (2.8.2)

γ(ω,k) =
m2(ω̂2 − 1)

2(1− x2)

[ ω̂(2x4 + (x2 + 1)ω̂2 − x2 − 1
)

r3
+r

3
−

− x2 − 1
]
, (2.8.3)

kδ(ω,k) =
m2ω̂ x

2(1− x2)

[−2(x2 − 1)ω̂2 + x2 − ω̂4 − 1

r3
+r

3
−

+ ω̂
]
, (2.8.4)

where ω̂ ≡ ω/k, x ≡ cos θ and

r+r− ≡
(
ω̂ +

√
1− x2 + i0+

)1/2(
ω̂ −

√
1− x2 + i0+

)1/2
. (2.8.5)

The dispersion equations (2.1.18), (2.1.19) with the coefficients (2.8.1)-(2.8.4) cannot be

solved analytically. We have found numerically that there are no complex solutions, only

pure real and pure imaginary ones. Using a Nyquist analysis we have verified that all

solutions have been found by our numerical method. Details are given in Sec. 2.9.4. The

A-mode dispersion equation (2.1.18) has a pair of real solutions for all k and a pair of

imaginary solutions if the wave vector obeys

k < koA ≡
m√

2
| cot θ|. (2.8.6)

The G-mode dispersion equation (2.1.19) has two pairs of real solutions for all k and a

pair of imaginary solutions when the wave vector satisfies the condition

k < koG ≡
m

2
<

√
| cos θ|

√
cos2 θ + 4 + cos2 θ − 2

sin2 θ
. (2.8.7)

When cos2 θ < 1/2 (that is 90◦ > θ > 45◦), the argument of the square root is negative,

the real part of the root is zero, and the critical wave vector koG vanishes. One observes

that koA is obtained from kpG by changing the tangent function into a cotangent. As

explained in Sec. 2.9.4, the critical values (2.8.6), (2.8.7) are the values of k for which

the inverse propagators ∆−1
A and ∆−1

G , given by Eqs. (2.1.18)-(2.1.19), vanish at ω = 0.
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The unstable A- and G-modes for the extremely oblate system are shown in Figs. 2.24-

2.25.

The total number of modes is 6, 8 or 10 exactly as in the weakly oblate case (2.5.25)-

(2.5.27). The above results can be written in a compact form as

A−modes : 2 + 2Θ(koA − k), (2.8.8)

G−modes : 4 + 2Θ(koG − k). (2.8.9)

In Fig. 2.26-2.29 we show the dispersion curves obtained numerically from Eqs. (2.1.18),

and (2.1.19) for the angle θ equal 0◦, 15◦, 60◦ and 90◦. When θ = 0◦ the real solutions

ω− and ω+ exhibit sharp corners at the same value of k. The ωα solution lies on top of

the ω− solution at small k and on top of ω+ at large k. The two imaginary solutions

extend through all values of k and lie on top of each other, which is consistent with

the observation that koA and koG both go to infinity at θ = 0. At θ = 15◦ we see that

increasing the angle softens the corner in the real modes and causes the imaginary modes

to retreat. The inset shows a blow-up of the region where the real modes approach each

other. When θ has increased to 60◦, the imaginary G-mode has dropped out, and at 90◦

both imaginary modes are gone.

The structure of the plasmon spectrum in Figs. 2.26-2.29 is rather complicated. To

understand it better, we consider three special limits which can be treated analytically.

We start with k ‖ n (θ = 0◦), then we discuss the situation when k is almost parallel to

n (| sin θ| � 1), and finally we analyze the limit k ⊥ n (θ = 90◦).
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Figure 2.24: Unstable A-mode for the extremely oblate plasma: −ω2
a as functions of

k and cos θ in the domain where the mode exits. The angle θ is between the vectors k
and n
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Figure 2.25: Unstable G-modes for the extremely oblate plasma: ω2
− as functions of

k and cos θ in the domain where the mode exits. The angle θ is between the vectors k
and n.
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Figure 2.26: Dispersion curves of plasmons in extremely oblate plasma for θ = 0◦.
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Figure 2.27: Dispersion curves of plasmons in extremely oblate plasma for θ = 15◦.
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Figure 2.28: Dispersion curves of plasmons in extremely oblate plasma for θ = 60◦.
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Figure 2.29: Dispersion curves of plasmons in extremely oblate plasma for θ = 90◦.
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2.8.1 Special case: k||n

We consider k = (0, 0, k) parallel to n = (0, 0, 1). In this case, the vector nT , which is

defined by Eq. (2.1.6), vanishes. The decomposition using the basis A,B,C,D, which is

introduced in Sec. 2.1.2, is therefore singular. However, since there is only one indepen-

dent vector in this case, one can decompose the inverse propagator or dielectric tensor

using the same basis as in the isotropic case (2.3.8). One finds easily

α(ω,k) =
m2

2
− m2(ω2 − k2)

4ω2
, (2.8.10)

β(ω,k) =
m2

2
. (2.8.11)

Alternatively, one can obtain these results in a straightforward way from the dielectric

tensor (2.1.4) which can be easily computed. For the extremely oblate distribution, v ⊥ k

and the denominators of the second and third terms in the integrand in Eq. (2.1.4) are

ω and ω2, respectively. Observing further that the second term of the integral vanishes

due to azimuthal symmetry, the dielectric tensor is diagonal. It is easy to show that the

matrix Σ equals

Σ(ω,k) =


ω2 − k2 − α(ω,k) 0 0

0 ω2 − k2 − α(ω,k) 0

0 0 ω2 − β(ω,k)

 . (2.8.12)

The structure of the matrix Σ given by Eq. (2.8.12) is similar to the isotropic case

(2.2.13), except that the matrix components 11 and 33 are interchanged because the

wave vector was chosen as k = (k, 0, 0) in Sec. 2.2. The conclusion is therefore the same

as for isotropic plasma: the solutions of the dispersion equation ω2 − k2 − α(ω,k) = 0

are transverse modes, which appear twice, and the solutions to ω2 − β(ω,k) = 0 are

longitudinal modes. Using Eq. (2.8.10) it is easy to find the dispersion relations which

are

ω2
α(k) =

1

2

(
1

4
m2 + k2 +

√(1

4
m2 + k2

)2
+m2k2

)

≈


1
4 m

2 + 2k2 for m2 � k2,

k2 for m2 � k2,
(2.8.13)
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ω2
αi(k) =

1

2

(
1

4
m2 + k2 −

√(1

4
m2 + k2

)2
+m2k2

)

≈

 −k
2 for m2 � k2,

−1
4 m

2 for m2 � k2,
(2.8.14)

ω2
β(k) =

1

2
m2. (2.8.15)

Both ωα and ωβ are real solutions which exist for all k, and ωαi = iγ is an imaginary

solution which also exists for all k. The maximum of the imaginary frequency is γmax =

m/2.

From Eqs. (2.8.8) and (2.8.9) the maximal number of solutions in extremely oblate

plasma is 10. When k ‖ n, we have θ = 0◦ which means koA and koG both approach

infinity. Therefore, our analysis of the special case k ‖ n should produce the maximal

number of solutions. Remembering that the transverse (α) modes are doubled, Eqs.

(2.8.13)-(2.8.15) correspond to 10 solutions.

The solutions ω2
α and ω2

β cross each other at

k2 = k2
c ≡

m2

6
. (2.8.16)

Let us define two combinations of the real solutions:

ω2
−(k) =

 ω2
α(k) for k < kc,

ω2
β(k) for k > kc,

(2.8.17)

ω2
+(k) =

 ω2
β(k) for k < kc,

ω2
α(k) for k > kc.

(2.8.18)

The dispersion curves are shown on the Fig. 2.26. The modes denoted ω− and ω+

are represented, respectively, by the blue (dotted) and green (dashed) lines. As will be

explained in the next section, the modes ω+ and ω− are physical in the sense that one

can obtain them by taking the limit θ → 0◦ of the solutions with the same names which

were found at θ > 0◦.
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2.8.2 Special case: k almost parallel to n

When the wave vector is not exactly along the z-axis but is slightly tilted, the spectrum

of collective modes is changed qualitatively. To discuss this case we assume that the

wave vector has a small x component kx = k sin θ ≈ kθ. The matrix Σ, which for θ = 0◦

is given by Eq. (2.8.12), now contains small off-diagonal components ∼ k2θ and is given

by

Σ(ω,k) =


−k2 + ω2 − m2

2 + m2(ω2−k2)
4ω2 0 k2θ

0 −k2 + ω2 − m2

2 + m2(ω2−k2)
4ω2 0

k2θ 0 ω2 − m2

2

 .

(2.8.19)

Computing the determinant of Σ, one finds two dispersion equations. The first repro-

duces the α modes in Eq. (2.8.13), and the solutions are doubled as was the case for k

parallel to n. The second dispersion equation can be written as

1

ω2

(
ω2 − ω2

α(k)
)(
ω2 − ω2

αi(k)
)(
ω2 − ω2

β(k)
)

= k4θ2. (2.8.20)

When θ = 0◦ we clearly recover the solutions of the previous section. Since the mode

ω2
αi does not cross either ω2

α or ω2
β, we express it as ω2

αi = −γ2 and rewrite Eq. (2.8.20)

in the form (
ω2 − ω2

α(k)
)(
ω2 − ω2

β(k)
)

= ε, (2.8.21)

where ε ≡ ω2k4θ2

ω2+γ2
. We want to look at the modes ωα and ωβ in the vicinity of the point

where they cross. To lowest order in deviations from the solutions with θ = 0◦, we take

ε as constant and solve the quadratic equation to obtain

ω2
− =

1

2

(
ω2
α + ω2

β −
√(

ω2
α − ω2

β

)2
+ 4ε

)
, (2.8.22)

ω2
+ =

1

2

(
ω2
α + ω2

β +
√(

ω2
α − ω2

β

)2
+ 4ε

)
. (2.8.23)

From these expressions, it is clear that the small parameter ε plays a role only in the

vicinity of the crossing point where ωα = ωβ. We note that ε ≥ 0 as both ω2
α and ω2

β are

positive. Assuming that (ω2
α − ω2

β

)2 � ε, we expand the square roots in the formulae

– 68 –



Chapter 2 Collective modes

(2.8.22) and (2.8.23) to obtain

ω2
−(k) =


ω2
α(k)− ε

|ω2
α−ω2

β |
for k < kc,

ω2
β(k)− ε

|ω2
α−ω2

β |
for k > kc,

(2.8.24)

ω2
+(k) =


ω2
β(k) + ε

|ω2
α−ω2

β |
for k < kc,

ω2
α(k) + ε

|ω2
α−ω2

β |
for k > kc.

(2.8.25)

This result shows that the modes ω2
− and ω2

+ approach each other at k = kc but do not

cross. This is phenomenon of mode coupling already encoutered in Sec. 2.3.2. One can

also show that the double imaginary mode ωαi splits into two different modes when θ is

finite.

The complete spectrum is presented on the Fig. 2.27 for θ = 15◦. As shown in the inset,

the ω+ and ω− modes approach each other at k = kc but do not cross. The number of

modes is the same as for the extremely oblate distribution with arbitrary values of θ.

2.8.3 Special case: k ⊥ n

When k ⊥ n, the wave vector can be written as k = k(cosφ, sinφ, 0) and therefore

the system can be treated as effectively two-dimensional isotropic in the x−y plane.

From Eqs. (2.8.6)-(2.8.7) we see that both of the critical wave vectors koA and koG

go to zero in the limit θ → 90◦ and therefore the two imaginary modes disappear, as

expected for an isotropic system. There should be two real solutions (one pair) from

the A-mode dispersion equation (2.1.18) and four real solutions (two pairs) from the

G-mode equation (2.1.19).

When x ≡ cos θ = 0, the coefficients (2.8.1), (2.8.2), (2.8.3), and (2.8.4) simplify to

α(ω,k) =
m2

2

ω2

k2

[
1−
√
ω2 − k2

ω

]
, (2.8.26)

β(ω,k) =
m2

2

ω2

k2

[
ω√

ω2 − k2
− 1

]
, (2.8.27)

γ(ω,k) =
m2

2

ω2 − k2

k2

[
ω√

ω2 − k2
− 1

]
, (2.8.28)

δ(ω,k) = 0, (2.8.29)

where ω ∈ R and ω2 > k2.
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Since δ(ω,k) = 0, the second dispersion equation factors into two equations, as in the

case of the weakly anisotropic plasma discussed in Sec. 2.5, and we solve the dispersion

equations for A-modes, B-modes, and C-modes (2.1.18), (2.5.3) and (2.5.4). The A-mode

dispersion equation (2.1.18) has the form

(ω2 − k2)k2 +
m2

2

[
ω
√
ω2 − k2 − ω2

]
= 0, (2.8.30)

which is quadratic in ω2 and can be solved analytically. The solution is

ω2
α(k) =

m4 + 4m2k2 − 8k4 +m3
√
m2 + 8k2

8(m2 − k2)

≈


1
4 m

2 + 5
4 k

2 for m2 � k2,

k2for m2 � k2.
(2.8.31)

The B-mode dispersion equation (2.5.3) simplifies to

k2 +
m2

2

[
1− ω√

ω2 − k2

]
= 0, (2.8.32)

and the solution gives the longitudinal mode

ω2
β(k) =

(
m2

2 + k2
)2

m2 + k2
≈


1
4 m

2 + 3
4 k

2 for m2 � k2,

k2 for m2 � k2.
(2.8.33)

Finally, the C-mode dispersion equation (2.5.4) becomes

ω2 − k2 − m2

2
= 0, (2.8.34)

which produces the solution

ω2
αγ(k) =

1

2
m2 + k2. (2.8.35)

These real solutions are the limits θ → 90◦ of those found for arbitrary angles by solving

numerically the G-mode dispersion equation (2.1.19). The solution ωαγ is the larger of

the two real G-modes (which we call ω+) and ωβ is the smaller G-mode (called ω−)

which stays above the light cone for all k when θ = 90◦. The dispersion curves for k ⊥ n

are shown on the Fig. 2.29.

The spectrum of the extremely oblate system coincides with that of large but finite ξ.

We also note that the limit ξ → ∞ is approached much more quickly than the limit

σ →∞, which was discussed at the end of Sec. 2.7. In order to compare the two limits,

we consider the same example: the coefficient α(ω,k = 0) which is the mass of A−mode.
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Using the ξ−distribution (2.4.1) we find

αξ(ω,k = 0) =
m2

4

Cξ√
ξ

[(
1− 1

ξ

)
Arctan

√
ξ +

1√
ξ

]
, (2.8.36)

and for ξ � 1 we have

αξ(ω,k = 0) ≈ m2

4

(
1 +

2

π
√
ξ

)
. (2.8.37)

From this expression we find that for ξ = 104 the coefficient αξ(ω,k = 0) differs from

the extremely oblate limit (ξ → ∞) by only 0.6%. In comparison, ασ(ω,k = 0) differs

from the extremely prolate limit by 10% (see Eq. (2.7.11)).
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2.9 Nyquist analysis

A Nyquist analysis allows one to determine the number of solutions of a given equation

without solving the equation. Knowing the number of solutions is very important for our

analysis of plasmons, because in all cases except that of the two-stream and extremely

prolate distribution, it is not possible to obtain general exact analytic solutions of the

dispersion equations. In some cases we have used analytic approximations, and in others

we have found solutions numerically. When an approximation is used, there is a danger

to find solutions that are artifacts of the approximation. When numerical methods are

used, a solution that is outside the range of the search can be missed.

To explain the idea of a Nyquist analysis, we discuss a generic equation of the form

f(ω) = 0, (2.9.1)

and we define the function

F (ω) ≡ f ′(ω)

f(ω)
=

d

dω
lnf(ω). (2.9.2)

We consider the contour integral ∮
C

dω

2πi
F (ω), (2.9.3)

where the contour is a positively (anticlockwise) oriented closed loop, which is chosen so

that F (ω) is analytic inside the loop except at isolated points. The integral is equal to

the sum of the residues. It is straightforward to show that the residue of F (ω) at a zero

of f(ω) of order l is l, and the residue of F (ω) at a pole of f(ω) of order l is −l. Thus,

we have ∮
C

dω

2πi
F (ω) = nZ − nP , (2.9.4)

where nZ and nP are the numbers of zeros and poles of f(ω) inside the contour C, taking

into account the fact that each zero and pole of order l is counted l times. Our aim is to

determine nZ . The first step in the Nyquist analysis is to choose the contour C. If f(ω)

has only isolated singular points, then C can be chosen as the big circle which includes

the entire plane of complex ω. If f(ω) has cuts, then the contour must be chosen to

exclude these cuts. For example, for isotropic plasma, which is discussed in Sec. 2.9.1,

f(ω) has a cut for ω ∈ [−k, k] and consequently the contour C is chosen as in Fig. 2.30.

For all of the momentum distributions, except the two-stream and extremely prolate

cases, we have considered in this chapter, the dispersion equation has a cut along the real

axis. The contours we will use in the Nyquist analysis of all dispersion equations are all
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similar to Fig. 2.30, but the length of the cut depends on the particular distribution. The

integrals along the lines connecting the circular contour C∞ to Ccut always compensate

each other and therefore the contour integral (2.9.4) equals∮
C∞

dω

2πi
F (ω) +

∮
Ccut

dω

2πi
F (ω) = nZ − nP . (2.9.5)

The contribution from the big circle is easy to calculate by writing ω = |ω|eiφ and taking

|ω| → ∞. Using dω = iωdφ, we have∮
C∞

dω

2πi
F (ω) = lim

|ω|→∞
ωF (ω) ≡ n∞. (2.9.6)

The integral along the cut can be calculated using the fact that F (ω), defined by

Eq. (2.9.2), is the logarithmic derivative of f(ω). Consequently∮
Ccut

dω

2πi
F (ω) =

1

2πi

∮
Ccut

d

dω
lnf(ω) =

1

2πi

(
lnf(ωe)− lnf(ωs)

)
≡ nW , (2.9.7)

where ωs is the (arbitrarily chosen) starting point of the contour which encloses the cut,

and ωe is the end point. The points ωs and ωe have the same modulus, but their phases

differ by 2π. The value of the right-hand-side of Eq. (2.9.7) can be found by mapping

the closed contour Ccut in the plane of complex ω onto a path in the plane of complex

f(ω). Since the logarithm of f has a cut, which runs along the real axis from f = −∞ to

f = 0, the value of the integral (2.9.7) is a winding number (denoted nW ) which equals

the number of times that the curve in the plane of complex f , which starts at f(ωs) and

ends at f(ωe), travels counterclockwise around the point f = 0.

Combining the results (2.9.6) and (2.9.7), we rewrite Eq. (2.9.5) as

nZ = nP + n∞ + nW , (2.9.8)

which tells us that the number of zeros of the function f(ω) inside the contour C equals

the number of poles of f(ω) inside this contour, plus n∞ given by the limit (2.9.6), plus

the winding number (2.9.7). In the following subsections we show how to evaluate the

numbers nP , n∞ and nW for the dispersion equations under study. In each case, the only

difficult piece is the calculation of nW , for which we will need to determine the signs of

the real and imaginary parts of the function f(ω) along the contour Ccut.

To illustrate the procedure, we will produce graphs of f(ω) using the following conven-

tions. We plot f(ω) as a function of ω along the cut for various choices of the angle

θ. The real part of f(ω) is the same whether ω has a positive or negative infinitesimal

imaginary part, and is represented as a red (solid) line. The imaginary part with positive
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infinitesimal imaginary part (values of ω along the top of the cut) is a blue (dotted) line,

and for negative infinitesimal imaginary part (on the bottom of the cut) it is a green

(dashed) line.

Figure 2.30: The contour C in the plane of complex ω which is used to compute the
number of solutions of some dispersion equations.

– 74 –



Chapter 2 Collective modes

2.9.1 Isotropic plasma

We start with the familiar case of isotropic plasma. It is instructive to see how the

Nyquist analysis works in this case for which the answer is known. The function f(ω)

for (transverse) A-modes and (longitudinal) B-modes is given by equations (2.2.9) and

(2.2.10), respectively. The coefficients αiso(ω,k) and βiso(ω,k) (given by Eqs. (2.2.2),

(2.2.3)) have cuts for ω ∈ [−k, k], which means that the contour C should be chosen as

in Fig. 2.30. In both cases, f(ω) does not have any poles inside the contour, and therefore

nP = 0. Using Eq. (2.9.6) it is straightforward to show that n∞ = 2 for A-modes and

n∞ = 0 for B-modes.

The winding number nW is calculated from Eq. (2.9.7) by mapping the contour Ccut

in the plane of complex ω onto the plane of complex f(ω). In Fig. 2.33, and 2.34 we

show the real and imaginary parts of f(ω) as functions of ω, considering only values of

ω which lie infinitesimally above and below the cut. The structure of the graph reflects

the well known symmetry properties of the dielectric functions (2.2.11)

<εL,T (−ω,k) = <εL,T (ω,k), =εL,T (−ω,k) = −=εL,T (ω,k). (2.9.9)

We move around the cut shown in Fig. 2.30 in the counter-clockwise direction, using

the data presented in Fig. 2.33, and 2.34. We describe the process of mapping for A-

modes. Let us start, for example, at the top left corner of the cut where ω = −k + i0+.

The red (solid) line in Fig. 2.33 tells us that the real part of the dispersion equation

at this value of ω is negative, and the blue (dotted) curve tells us that the imaginary

part is also negative. Combining these results, f(ω = −k + i0+) is found to be in the

third quadrant of its complex plane, as shown in the bottom left corner of Fig. 2.31.

Continuing in the same fashion, one produces the map shown in Fig. 2.31 where the

point f = 0 is circumnavigated zero times. Equivalently, the cut of the function lnf is

crossed twice in each direction, so that lnf remains on the same Riemann sheet, and

consequently the integral (2.9.7) vanishes. The conclusion is that the winding number

nW equals zero. The equivalent mapping for B-modes is shown in Fig. 2.32. In this

case, the circular trajectory is shifted to the right so that the origin is enclosed within

the loop. The mapping circumnavigates the origin twice, and the winding number is

therefore nW = 2.

Combining the results derived above, Eq. (2.9.8) gives

A−modes : nZ = 0 + 2 + 0 = 2,

B −modes : nZ = 0 + 0 + 2 = 2, (2.9.10)
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which agrees with the known result that the dispersion equations for (transverse) A-

modes and (longitudinal) B-modes both have two solutions (one pair of positive and

negative real solutions).

We note that for B-modes, the non-zero winding number is obtained because the circular

trajectory in Fig. 2.32 is shifted to the right so that the origin is inside the loop, or

equivalently, because the real part of f(ω = 0) is positive. In the following sections

we will see that for anisotropic plasmas (except in the case of the extremely prolate

distribution) there are cases for which f(ω = 0) > 0, nW 6= 0, and extra solutions to the

dispersion equations appear, when a specific condition on the wave vector k is satisfied.

These extra solutions are imaginary modes, which do not exist in isotropic plasmas. We

comment that the Nyquist analysis itself can only tell us the number of solutions of a

given equation but gives no information about the nature (real, imaginary or complex)

of these solutions.

Figure 2.31: The mapping of the contour Ccut onto the path in complex f(ω) for
isotropic plasma. Plot shows the mapping for the A-mode dispersion equation.

Figure 2.32: The mapping of the contour Ccut onto the path in complex f(ω) for
isotropic plasma. Plot shows the mapping for the B-mode dispersion equation.
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σ=ξ=0
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 0.5
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 -1.0
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 -0.5

 -1.0  0.5 -0.5

Figure 2.33: The real and imaginary parts of f(ω) for A-modes in isotropic plasma
for k/m = 1 and ω along the cut.

σ=ξ=0

 0

 1.0

 1.0 0 -1.0  0.5 -0.5

 -2.0

 -1.0

 2.0

Figure 2.34: The real and imaginary parts of f(ω) for B-modes in isotropic plasma
for k/m = 1 and ω along the cut.
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2.9.2 Weakly anisotropic plasma

In the case of a weakly anisotropic plasma, there are three dispersion equations (2.1.18),

(2.5.3), and (2.5.4) whose solutions give A-, B- and C-modes. The components α, β, γ

of the polarization tensor are given in Sec. 2.5. We first note that the analytic structure

of f(ω) in all three cases is the same as for isotropic plasma, and therefore we can use

the contour shown in Fig. 2.30. For all three equations there are no poles inside the

contour, which means nP = 0.

We start by considering Eq. (2.5.3) which produces B-modes. It is easy to show that

n∞ = 0, as for the isotropic case. The mapping of the cut into the complex plane of f(ω)

also looks like the mapping for the isotropic case (Fig. 2.32), and therefore nW = 2, also

as for the isotropic case. The conclusion is that there are 2 solutions - the same as for

longitudinal modes in isotropic plasmas.

Now we consider A-modes and C-modes. Equation (2.9.6) gives n∞ = 2 in both cases,

and therefore equation (2.9.8) tells us that the number of solutions is nZ = 2 + nW .

For isotropic A-modes we showed in the previous section that f(ω = 0) ≤ 0 for any k,

nW = 0, and the number of solutions is always 2. We will show below that for anisotropic

plasmas with arbitrarily small ξ, for both A-modes and C-modes, there are wave vectors

for which f(ω = 0) > 0, nW > 0, and additional solutions appear.

For the A-mode and C-mode dispersion equations, f(ω = 0) can be either negative or

positive depending on the length and orientation of the wave vector k. Two examples

are shown in Fig. 2.35, and 2.36 for A-modes. When f(ω = 0) ≤ 0, as in Fig. 2.35, the

mapping of the contour Ccut in the plane of complex ω onto the plane of complex f(ω)

looks qualitatively like in Fig. 2.31 and we have nW = 0. When f(ω = 0) > 0, as shown

in Fig. 2.36, the mapping looks like Fig. 2.32, and nW = 2. The corresponding analysis

of C-modes is qualitatively similar.

We can find analytically the condition that distinguishes the case of nW = 0 from that

of nW = 2. Using Eqs. (2.2.2), (2.5.5), (2.5.7), one obtains

A−modes : f(ω = 0) = −k2 + ξ
m2

3
cos2 θ, (2.9.11)

C −modes : f(ω = 0) = −k2 − ξ m
2

3

(
1− 2 cos2 θ

)
. (2.9.12)

From these expressions we can derive a critical value of the magnitude of the wave

vector (as a function of θ) at which f(ω = 0) becomes positive and the winding number

changes from 0 to 2. These critical values are denoted kA and kC and given in Eqs.

(2.5.12), (2.5.22). The number of solutions of the A-mode dispersion equation is either 2
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or 4, depending on whether k is smaller or greater than kA, and the C-mode dispersion

equation has either 2 or 4 solutions, depending on whether k is smaller or greater than

kC . These results agree with Eqs. (2.5.25), (2.5.27).

        ξ=0.3  θ=78°         

 1.0 0 -1.0  0.5 -0.5

 0

 0.2

 -0.2

 0.4

 -0.4

 -0.6

Figure 2.35: The real and imaginary parts of f(ω) for A-modes in weakly anisotropic
plasma with ξ = 0.3 for ω along the cut where k/m = 0.2 and θ = 78◦.

        ξ=0.3  θ=26°         

 1.0 0 -1.0  0.5 -0.5

 0

 0.2

 -0.2

 0.4

 -0.4

 -0.6

Figure 2.36: The real and imaginary parts of f(ω) for A-modes in weakly anisotropic
plasma with ξ = 0.3 for ω along the cut wher k/m = 0.2 and θ = 26◦.
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2.9.3 Extremely prolate plasma

A Nyquist analysis is not necessary for the extremely prolate system, because one can

find exact analytic solutions (2.7.6), (2.7.7), and (2.7.8) to the dispersion equations

(2.1.18), (2.1.19), and therefore there is no possibility that solutions have been missed.

The extremely prolate distribution is interesting for a different reason however. There is

a qualitative difference between the numerical solutions found using the σ-distribution

(2.4.6) with very large values of σ and the solutions obtained from the extremely prolate

distribution, which corresponds to σ →∞. The analogous statement is not true for the

ξ-distribution. In order to understand this point, we have done a Nyquist analysis of the

extremely prolate case.

The analysis of the A-mode dispersion equation (2.1.18) is completely trivial. The

function f(ω) has no poles and no cuts, and therefore we choose the contour as a

big circle that includes the whole complex plane. Equation (2.1.18) has two solutions,

nZ = n∞ = 2. In the case of the G-mode dispersion equation (2.1.19), there are no

cuts, the contour is chosen as the same big circle, and the winding number is zero. The

function f(ω) has two double poles at ω = ±k · n and thus nP = 2 × 2 = 4. From the

definition (2.9.6) one obtains n∞ = 2. Combining these results, Eq. (2.9.8) gives nZ = 6.

Adding the A-modes and G-modes together we reproduce the result from Sec. 2.7, that

the extremely prolate system has a total of 8 solutions at all wave vectors, in contrast

to the system with very large prolate anisotropy, which has 8 solutions only for certain

wave vectors.

The important point is that the analytic properties of the left-hand-side of the G-mode

dispersion equation (2.1.19) as a function of ω change when σ → ∞. In this limit, the

cut singularity at ω ∈ [−k, k] changes into double poles at ω = ±k · n. For σ very large

but finite, there is a contribution to nZ from nW = 2 for k < kpG (see Eq. (2.7.9)). When

σ → ∞, the cut, and therefore also the winding number, disappears, but nZ acquires

a contribution from nP which exists for all k. Therefore the limit σ →∞ produces the

same number of solutions as the k < kpG region of the large σ distribution, but not

the k > kpG region. There are always 8 solutions of the dispersion equations in case of

extremely prolate plasma, and there are 8 or 6 solutions for large σ depending whether

or not the condition k < kpG is satisfied.
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2.9.4 Extremely oblate plasma

The A-modes are obtained from the dispersion equation (2.1.18) with the coefficient

α(ω,k) given by Eq. (2.8.1). The function ∆−1
A (ω,k) ≡ ω2 − k2 − α(ω,k) equals

∆−1
A (ω,k) = ω2 − k2 − m2

2(1− cos2 θ)k2

[
ω2 − k2 cos2 θ (2.9.13)

− ω(ω2 − k2)

k
√
ω + k

√
1− cos2 θ

√
ω − k

√
1− cos2 θ

]
.

This function has a cut due to the square root, and we choose the contour C as in

Fig. 2.30, but with the cut extending from −k
√

1− cos2 θ to k
√

1− cos2 θ instead of

[−k, k], as in the isotropic and weakly anisotropic cases. The mapping of the path along

the cut to the plane of complex f(ω) is discontinuous, because of the fact that =f(ω) is

infinite at ω = ±k
√

1− cos2 θ. To avoid this problem, we analyze the function

f(ω) ≡
√
ω + k

√
1− cos2 θ

√
ω − k

√
1− cos2 θ ∆−1

A (ω,k), (2.9.14)

which has the same cut and the same number of zeros as the original function of the

A-mode dispersion equation (2.9.13). The function f(ω) has no singularity inside the

contour and thus nP = 0. Equation (2.9.6) gives n∞ = 3 and thus the number of zeros

of f(ω) is nZ = 3 + nW . To map the path around the cut to the plane of complex f(ω),

we use Fig. 2.37, and 2.38 where the real and imaginary parts of f(ω) along the cut are

shown for two different values of cos θ for k/m = 1. For the case shown in Fig. 2.37, where

=f(ω = i0+) < 0, the point f = 0 is encircled once in the negative (clockwise) direction

which gives nW = −1. In the case corresponding to Fig. 2.38, where =f(ω = i0+) > 0,

the point f = 0 is encircled once in the positive (anticlockwise) direction and nW = 1.

The winding number is therefore determined by the sign of =f(ω = i0+). The number

of solutions thus equals 2 + 2θ(=f(ω = i0+)) = 2 + 2Θ(koA− k) which gives Eq. (2.8.8).

The G-modes are obtained from the dispersion equation (2.1.19) with the coefficients

α, β, γ, δ given by Eqs. (2.8.1)-(2.8.4). In this case it is easier to work with the function

defined as

f(ω) =
k2

ω2

(
ω + k

√
1− cos θ2

)3/2(
ω − k

√
1− cos θ2

)3/2
∆−1
G (ω,k). (2.9.15)

Since this function has a cut for ω ∈
[
− k
√

1− cos2 θ, k
√

1− cos2 θ
]
, we choose the

same contour as for the analysis of the A-modes described above. The function f(ω) has

no singularities inside the contour and therefore nP = 0. Eq. (2.9.6) gives n∞ = 5, and

consequently, the number of zeros of f(ω) inside the contour equals nZ = 5 + nW . The

winding number is calculated from the graphs shown in Fig. 2.39 and 2.40.
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In Fig. 2.39 nW = −1 and Fig. 2.40 nW = 1. The number of solutions of the dispersion

equation (2.1.19) is therefore either 4 or 6, depending on the sign of =f(ω = i0+). The

result can be written as in Eq. (2.8.9) with the critical value of wave vector defined by

Eq. (2.8.7).

ξ=∞  θ=45°
 1.0

 0

 -1.0

 0.5

 -0.5

 0  0.2 -0.2  0.4 -0.4  0.6 -0.6

Figure 2.37: The real and imaginary parts of f(ω) for A-modes in extremely oblate
plasma for ω along the cut and k/m = 1. For θ = 45◦ which corresponds to k > koA

and gives nW = −1.

ξ=∞  θ=26° 
 1.0

 0

 -1.0

 0.5

 -0.5

 0  0.2 -0.2  0.4 -0.4

Figure 2.38: The real and imaginary parts of f(ω) for A-modes in extremely oblate
plasma for ω along the cut and k/m = 1. For θ = 26◦ which gives k < koA and nW = 1.
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ξ=∞  θ=33° 

 0  0.2 -0.2  0.4 -0.4  0.6 -0.6

 -0.2

 -0.4

 0

 0.2

 0.4

Figure 2.39: The real and imaginary parts of f(ω) for G-modes in extremely oblate
plasma for ω along the cut and k/m = 1. For θ = 33◦ which corresponds to k > koG

and gives nW = −1.

ξ=∞  cosθ=23° 

 0  0.2 -0.2  0.4 -0.4

 -0.2

 -0.4

 0

 0.2

 0.4

Figure 2.40: The real and imaginary parts of f(ω) for G-modes in extremely oblate
plasma for ω along the cut and k/m = 1. For θ = 23◦ which gives k < koG and nW = 1.
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2.10 Summary and final remarks

In this chapter we performed a systematic analyses of the collective modes for anisotropic

plasma. In every case which is presented in this thesis we have calculated the dispersion

curves for the full spectrum, in some cases numerically and in some cases analytically.

As we proved the are no complex solutions. The plasmons are either pure real or pure

imaginary, and always show up with a partner with opposite sign. In all system which

are considered in this chapter there are unstable modes which are limited to the certain

domain of the wave vector, except the isotropic system where the unstable mode does

not exist. The number of modes for each system obtained by deforming the isotropic

one is summarized in Table 2.1.

To complete our analyses it is interesting to look at these critical wave vectors as func-

tions of θ. In Fig. 2.41 we show the behaviour of the critical vectors kA, koA, kC, koG

and kpG as a function of angle (0◦ < θ < 90◦) for different values of the anisotropy

parameters.

The prolate critical wave vector has a maximum at θ = 90◦, which goes to infinity in

the extreme prolate case, and the oblate critical vectors have maximum at θ = 0◦ which

approaches infinity in the extreme oblate case. The prolate plasma system produces the

strongest instability when the wave vector k is exactly transverse to the anisotropy vector

n. For the oblate system the situation is exactly reversed, and the strongest instability

occurs when the wave vector and anisotropy vector are parallel to each other.

5

4

3

2

1

15 75604530 900 
(deg)

Figure 2.41: The critical wave vectors as a function of θ. The red (solid) line represents
koA, blue (dashed) curve is kpG, cyan (dotted) is kC with σ = −ξ = 0.5, green (dot-dash)

is koG, and finally the dark green (dot-dot-dash) line is kC with ξ = −σ = 0.5.
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Chapter 3

Energy Loss

In this chapter, which is based on our paper [68], we will use the spectra of collective

excitations obtained in Chapter 2 to calculate the energy loss of a test parton in QCD

plasma which is in a non-equilibrium unstable state.

The energy loss of charged particles passing through matter is a standard problem

in nuclear physics, actively studied both theoretically and experimentally for decades

(Jackson, 1975), but the problem is, in general, very complex and it is still far from

being completely solved [69, 70].

The total energy loss of a parton traversing a quark-gluon medium is the sum of col-

lisional and radiative contributions: ∆E = ∆Ecoll + ∆Erad. The first one is caused by

elastic collisions with QGP constituents and in the second case a parton traversing the

plasma loses energy by medium-induced multiple gluon emission. The collisional en-

ergy loss was originally estimated by Bjorken (1982) [31], Gyulassy and Thoma [71] and

Mrówczyński [72] and then systematically derived by Braaten and Thoma [73, 74]. Later

on it was improved by various authors [75, 76]. The energy loss due to multiple gluon

radiation (“gluonstrahlung”) was estimated and shown to be the dominant process when

the test parton is a light quark or gluon [77–81]. For heavy quarks the collisional energy

loss is expected to give the dominant contribution because the radiation phase space is

restricted by the “dead-cone effect” [82]. For a review on the energy loss see e.g. Ref. [69].

In the following we will focus on the collisional energy loss in anisotropic plasma using

the formalism of classical kinetic theory. Although the anisotropic phase of QGP is

very short lived, it might have a significant effect on the energy loss of a test parton

because the weakly interacting anisotropic QGP is populated with large chromodynamic

fields which act back onto the test parton leading to a sizable change of its energy. The

collisional energy loss in anisotropic QGP was studied in [83] but the unstable plasma
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was treated as a static medium and the interaction of the test parton with exponentially

growing chromodynamic fields was missed.

We derive the energy loss in unstable plasma as a solution of the initial value problem.

The test parton is treated as a classical particle with SU(Nc) color charge. A motion

of such a particle in an external colour field is described by the Wong equations [84],

which we combine with the classical Yang-Mills equations. This approach is equivalent

to using QCD within the hard-loop (HL) approximation [61]. In the equilibrium limit

the time dependence of the energy loss disappears and we reproduce the soft part of the

collisional energy loss [31, 71, 72, 74], where the momentum transfer is of the order of

the Debye mass.

Our crucial finding is that depending on the initial conditions the test parton can either

lose or gain energy when it is traversing the unstable QGP. In an equilibrium plasma

the parton loses energy and the energy change per unit length dE/dx is negative. If

the parton gains energy from the plasma fields, dE/dx is positive. Although the energy

transfer can be either negative or positive, depending on the situation, we use the term

‘energy loss’ generically to describe both situations. Our results show that the magnitude

of the energy loss increases exponentially, which indicates that the unstable modes play

an important role. The energy loss, which is found, is strongly time dependent and

the dependence is much stronger than the switching-on effect studied in [85, 86]. It

is also strongly directionally dependent. At late enough times, the energy loss can be

much bigger than in equilibrium plasmas. In contrast, the energy loss computed in

the framework of AdS/CFT duality in the strong coupling regime is rather similar in

equilibrium and in far-from-equilibrium plasma at the same energy density [87].

The acceleration of a test particle in a plasma system might seem rather exotic, but

the phenomenon is well known in the physics of electromagnetic plasmas. It is caused

by the electric field associated with plasma waves in the system. Charged particles are

carried forward on the electrostatic wave with a motion like surfing with speed equal

to the phase velocity of the wave, and can therefore be boosted to very high energies.

This picture motivates the idea to use a plasma excited by a laser or particle beam as a

particle accelerator. A mechanism was proposed in 1979 by Tajima and Dawson [88], and

was experimentally verified soon afterwards [89]. Since plasmas can sustain accelerating

fields orders of magnitude larger than those in the radio-frequency modules of standard

accelerators, small plasma devices can be extremely efficient. In the experiment in Ref.

[90], electrons were accelerated to an energy as high as 1 GeV over a distance of 3.3

cm, demonstrating immense promise for affordable and compact plasma accelerators for

various applications.
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Our treatment is fully classical, and we assume that the momenta of the collective modes

are much less than the momenta of the plasma constituents. Our results are ultraviolet

sensitive, which is expected since the approach is classical. In case of equilibrium (stable)

plasma, the energy loss due to soft interactions diverges logarithmically with the upper

limit of the collective mode momentum, which we call kmax. In our anisotropic calcula-

tions, we also find an approximately logarithmic dependence on kmax. This divergence

signals the necessity to combine the classical contribution to the energy loss at small

wave vectors with the quantum contribution at higher ones. A quantum approach to

parton energy loss in unstable plasma needs to be developed, but it goes beyond the

scope of the thesis.
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3.1 General formula

Our formalism is based on the HL QCD effective action. It can be shown that the

Wong equations [84] and the linearised Yang-Mills (Maxwell) equations can be obtained

directly from this action [61]. The Wong equations describe the motion of a classical

parton moving in the fields of a plasma. The motion of the parton changes the field

configuration, which is self-consistently taken into account through the linearised Yang-

Mills equations relating the chromodynamic fields to the parton charge and current.

We emphasize that even though the Yang-Mills equations are linearised by the HL

approximation, HL QCD is not equivalent to HL QED (up to an overall factor), because

the gluons contribute to the color charge density and current in these equations.

The Wong equations, which describe the motion of a parton in a chromodynamic field,

are usually written in the Lorentz covariant form [84]

dxµ(τ)

dτ
= uµ(τ), (3.1.1)

dpµ(τ)

dτ
= gQa(τ)Fµνa

(
x(τ)

)
uν(τ), (3.1.2)

dQa(τ)

dτ
= −gfabcuµ(τ)Aµb

(
x(τ)

)
Qc(τ), (3.1.3)

where τ , xµ(τ), uµ(τ) and pµ(τ) are, respectively, the parton’s proper time, trajectory,

four-velocity and four-momentum; Fµνa and Aµa denote, respectively, the chromodynamic

field strength tensor and four-potential in the adjoint representation of the SU(Nc) gauge

group with the color index a = 1, 2, . . . N2
c − 1; g is the coupling constant, which is

assumed to be small, and finally Qa is the classical color charge of the parton.

The Wong equations (3.1.1), (3.1.2), and (3.1.3) are supplemented by the linearised

Yang-Mills equations describing the self-consistent generation of the chromodynamic

field. We write the linearised Yang-Mills equations in a non-covariant three-vector nota-

tion where they have the familiar form of Maxwell equations in a medium. In Heaviside-

Lorentz electromagnetic units, which are usually used in quantum field theory, we have

∇ ·Da(t, r) = ρa(t, r) , ∇ ·Ba(t, r) = 0, (3.1.4)

∇×Ea(t, r) = −∂Ba(t, r)

∂t
, ∇×Ba(t, r) = ja(t, r) +

∂Da(t, r)

∂t
, (3.1.5)

where Ea, Da, Ba are the chromoelectric field, chromoelectric induction and chromomag-

netic field; and ρa and ja are the density and current of the test parton, respectively. To

close the system of Maxwell equations (3.1.4) and (3.1.5), the chromoelectric induction
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is expressed through the chromoelectric field

Di
a(t, r) =

∫
dt′ d3r′εij(t− t′, r− r′)Eja(t

′, r′), (3.1.6)

where εij(t, r) is the chromodielectric permeability, see Eq. (2.1.3).

To solve the Wong equations (3.1.1), (3.1.2), and (3.1.3) we adopt two simplifying as-

sumptions. The first is that we choose the gauge condition

uµ(τ)Aµa
(
x(τ)

)
= 0, (3.1.7)

which requires that the potential vanishes along the parton’s trajectory. Using this gauge,

the third Wong equation (3.1.3) simply states that the parton’s charge is a constant of

motion, or that Qa is independent of τ . The second important simplification comes from

the fact that we consider a highly energetic parton and assume that its velocity v is

constant and v2 = 1. In an equilibrium plasma the characteristic momentum transfer

|∆p| is of order gT and the parton’s momentum |p| � T , where T is the temperature.

The hard loop approach requires gT � T , and therefore |∆v| ∼ |∆p|/|p| � 1. When

we consider anisotropic systems, we assume the same hierarchy of scales which gives

|∆v| � 1. The physical picture is that due to interaction with the chromodynamic field

the parton’s energy and momentum evolve in time without changing the magnitude of

its velocity.

Replacing the proper time τ by the time t = γτ and writing xi(t) = ri(t) and ui(t) = γ vi,

the first Wong equation (3.1.1) gives r(t) = vt. Using this result, we obtain from the

second Wong equation (3.1.2) with µ = 0

dE(t)

dt
= gQa Ea

(
t, r(t)

)
· v. (3.1.8)

Since the current generated by the moving parton equals

ja(t, r) = gQavδ(3)(r− vt), (3.1.9)

we rewrite Eq. (3.1.8) as

dE(t)

dt
=

∫
d3rEa(t, r) · ja(t, r). (3.1.10)

To obtain the energy loss we must solve equations (3.1.4) and (3.1.5) for the electric

field and substitute into equation (3.1.10).

The electric field that appears in equations (3.1.8) and (3.1.10) is the total electric field,

which is the sum of the external field generated directly by the moving test parton
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and the induced electric field produced by the charge distributions and currents that

are induced by the parton in the plasma medium. The external electric field gives the

parton’s self-interaction and does not contribute to the energy loss. The energy loss

comes physically from the motion of the parton into the opposing induced electric field.

We derive below an expression for the total electric field from Maxwell’s equations.

At the end of the procedure, we must either show that the self-interaction does not

contribute to the energy loss, or we must subtract it.

It seems clear from Eq. (3.1.10) that if the parton moves into an electric field of opposite

orientation to its current, the change in the energy will be negative and we have energy

loss. We will show, however, that is not always the case. If the calculation is done as

an initial value problem, then the sign of the energy transfer crucially depends on the

choice of initial conditions.

To solve Maxwell’s equations we use the usual method which is to Fourier transform the

differential equations to change them into algebraic equations which can be easily solved.

However, we do not use a standard (two-sided) Fourier transform. Our problem is to

track the evolution of a parton starting from some arbitrary initial time (which we take

to be t = 0) and calculate its behaviour at future times. The non-equilibrated plasma is

not time-translation invariant, and the energy loss formula should depend on the initial

conditions, which means that we need to formulate the calculation as an initial value

problem. In order to do this, we use a one-sided Fourier transformation defined as

f(ω,k) =

∫ ∞
0

dt

∫
d3rei(ωt−k·r)f(t, r), (3.1.11)

f(t, r) =

∫ ∞+iσ

−∞+iσ

dω

2π

∫
d3k

(2π)3
e−i(ωt−k·r)f(ω,k). (3.1.12)

The inverse transformation (3.1.12) involves the real parameter σ > 0 which is chosen

so that the integral over ω is taken along a straight line in the complex ω-plane, parallel

to the real axis and above all singularities of f(ω,k).

The one-sided Fourier transform of the current (3.1.9) is obtained from Eq. (3.1.11)

where the time integral is defined through the limit

lim
ε→0+

∫ ∞
0

dt ei(ω−k·v+i0+)t =
i

ω − k · v + i0+
, (3.1.13)

which gives

ja(ω,k) =
igQav

ω − k · v + i0+
. (3.1.14)
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This procedure is mathematically equivalent to multiplying the current in equation

(3.1.9) by a factor e−0+t, which can be interpreted physically as imposing the boundary

condition that the current goes to zero as the time approaches infinity.

The one-sided Fourier transform of the relation (3.1.6) provides

Di
a(ω,k) = εij(ω,k)Eja(ω,k). (3.1.15)

Applying the one-sided Fourier transform to the Maxwell equations (3.1.4) and (3.1.5)

and using the relation (3.1.15) gives

ikiεij(ω,k)Eja(ω,k) = ρa(ω,k), (3.1.16)

ikiBi
a(ω,k) = 0, (3.1.17)

iεijkkjEka(ω,k) = iωBi
a(ω,k) +Bi

0a(k), (3.1.18)

iεijkkjBk
a(ω,k) = jia(ω,k)− iωεij(ω,k)Eja(ω,k)−Di

0a(k), (3.1.19)

where we have written Bi
0a(k) ≡ Bi

a(t = 0,k) and similarly for Di
0a(k). These initial

values come from the time integrals of the time derivatives of fields after performing an

integration by parts. The algebraic equations (3.1.16)-(3.1.19) are solved for the field

Eia(ω,k)

Eia(ω,k) = −i(Σ−1)ij(ω,k)
[
ωjja(ω,k) + εjklkkBl

0a(k)− ωDj
0a(k)

]
, (3.1.20)

where the Σij(ω,k) matrix is defined by Eq. (2.1.2).

The energy loss in equation (3.1.10) can now be written in terms of the Fourier trans-

formed field and current. Performing the inverse transformation (3.1.12), we have

dE(t)

dt
=

∫ ∞+iσ

−∞+iσ

dω

2π

∫ ∞+iσ′

−∞+iσ′

dω′

2π

∫
d3k

(2π)3
e−i(ω+ω′)t Ea(ω,k) · ja(ω

′,−k), (3.1.21)

and substituting the formulae (3.1.14) and (3.1.20) into Eq. (3.1.21), one obtains

dE(t)

dt
= −i

∫ ∞+iσ

−∞+iσ

dω

2π

∫ ∞+iσ′

−∞+iσ′

dω′

2π

∫
d3k

(2π)3
e−i(ω+ω′)t (3.1.22)

× igQavi

ω′ + k · v
(Σ−1)ij(ω,k)

[ iωgQavj
ω − k · v

+ εjklkkBl
0a(k)− ωDj

0a(k)
]
.
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The integral over ω′ can be done easily since the integrand has only one pole at ω′ =

−ω̄ ≡ −k · v. The result of integration over ω′ is

dE(t)

dt
= gQavi

∫
d3k

(2π)3

∫ ∞+iσ

−∞+iσ

dω

2πi
e−i(ω−ω̄)t(Σ−1)ij(ω,k) (3.1.23)

×
[ iωgQavj
ω − ω̄

+ εjklkkBl
0a(k)− ωDj

0a(k)
]
,

which is the main result of this section. In Appendix A.3 we prove that the energy loss

given by Eq.(3.1.23) is real.

Equation (3.1.23) gives the change of energy of the parton as a function of time, and

the expression depends on the initial conditions. The integral over ω is controlled by the

poles of the matrix Σ−1(ω,k) (or equivalently the gluon propagator) which determine

the gluon collective modes in the system. These modes are found as solutions of the

dispersion equation. This problem is discussed in Chapter 2, where the equation (2.1.2)

is solved for different distribution functions. Physically that means, that the test parton

does not interact with plasma constituents but rather with the plasma collective modes.

In Sec. 3.3 we discuss how to choose the initial conditions which enter the energy loss

formula (3.1.23). In the next section, however, we show that in the equilibrium limit,

Eq. (3.1.23) reduces to the familiar result which is independent of the initial conditions.

3.2 Equilibrium limit

When the plasma is in equilibrium all collective modes are damped and all poles of the

propagator ∆ij(ω,k) ≡ (Σ−1)ij(ω,k) are located in the lower half-plane of complex ω.

The corresponding contributions to the energy loss (3.1.23) exponentially decay in time,

and the only stationary contribution is given by the pole ω = ω̄ = k ·v which comes from

the current of the test parton. This means that the terms in Eq. (3.1.23) which include

the initial values of the fields can be neglected. It is mathematically equivalent to use

a two-sided Fourier transform from the beginning of the calculation, which means that

the initial conditions do not appear in the Maxwell equations (3.1.16), and the Fourier

transform of the current (3.1.9) is just proportional to δ(ω − k · v). The result is that,

once again, the only contribution to the integral over ω comes from ω = ω̄ ≡ k · v. In

both approaches the result is that the energy loss of a high-energy parton traversing an

equilibrium plasma is given by the time independent expression

dE

dt
= −ig2QaQavivj

∫
d3k

(2π)3
ω̄ (Σ−1)ij(ω̄,k). (3.2.1)
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Since the parton’s color charge is not an observable quantity because of its gauge de-

pendence, the energy loss (3.2.1) has to be averaged over the parton’s color state. This

is achieved by means of the relations∫
dQQa = 0, (3.2.2)

and ∫
dQQaQa = C2, (3.2.3)

which are derived in [61]; C2 = 1/2 for a quark in the fundamental representation of the

SU(Nc) gauge group and C2 = Nc for a gluon in the adjoint representation. Using the

relation (3.2.3), the color averaged energy loss is

dE

dt
= −ig2CRv

ivj
∫

d3k

(2π)3
ω̄ (Σ−1)ij(ω̄,k), (3.2.4)

where the color factor CR is given as

CR ≡


C2(N2

c−1)
Nc

= N2
c−1

2Nc
for quark,

C2 = Nc for gluon.

It is easy to see that the result in equation (3.2.4) is real. Since the electric field and

electric induction are both real in coordinate space, it follows from Eq. (3.1.6) that the

dielectric tensor obeys the relations

<εij(−ω,−k) = <εij(ω,k), =εij(−ω,−k) = −=εij(ω,k). (3.2.5)

Since the analogous relations hold for the matrix (propagator) Σ−1(ω,k), the real and

imaginary contributions to the integrand in Eq. (3.2.4) are, respectively, odd and even

as functions of k. Therefore, only the imaginary part of Σ−1(ω,k), which is responsible

for dissipative phenomena, contributes to the integral (3.2.4), and the energy loss is real

as it should be.

In an isotropic plasma the dielectric tensor can be decomposed into longitudinal and

transverse components

εij(ω,k) = εL(ω,k)
kikj

k2
+ εT (ω,k)

(
δij − kikj

k2

)
, (3.2.6)

and the matrix Σij(ω,k) can be inverted to obtain the propagator as

(Σ−1)ij(ω,k) =
1

ω2εL(ω,k)

kikj

k2
+

1

ω2εT (ω,k)− k2

(
δij − kikj

k2

)
. (3.2.7)
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Substituting this expression into Eq. (3.2.4), the energy loss is written

dE

dt
= −ig2CR

∫
d3k

(2π)3

ω̄

k2

[
1

εL(ω̄,k)
+

k2v2 − ω̄2

ω̄2εT (ω̄,k)− k2

]
. (3.2.8)

Using the symmetry relations (3.2.5) for εL,T (ω,k), Eq. (3.2.4) becomes

dE

dt
= −g2CR

∫
d3k

(2π)3

ω̄

k2

[
Im εL(ω̄,k)

|εL(ω̄,k)|2
+
ω̄2(k2v2 − ω̄2)Im εT (ω̄,k)

|ω̄2εT (ω̄,k)− k2|2

]
. (3.2.9)

As discussed under equation (3.1.10), the energy loss formula (3.1.10), and consequently

the formula (3.1.23), includes the self-interaction of the test parton with the electric

field generated by the parton’s current (3.1.9). The parton’s self-interaction should not

contribute to the energy loss (3.2.8), and therefore we need to calculate this contribution

separately and, if it is not zero, we need to subtract it from the energy loss obtained

from Eq. (3.2.8). Since the effect of self-interaction is the same in a vacuum and in a

medium, we derive it substituting into Eq. (3.2.8) the dielectric functions of the vacuum,

which are

εL(ω,k) = εT (ω,k) = 1. (3.2.10)

Using Eq. (3.2.10) the formula (3.2.8) gives

dE

dt

∣∣∣∣
vacuum

= ig2CR(1− v2)

∫
d3k

(2π)3

ω̄

ω̄2 − k2

= −ig
2CR

(2π)2
(1− v2)

∫ ∞
0

dk k

∫ +1

−1

d(cos θ) cos θ

1− v2 cos2 θ
= 0, (3.2.11)

where we have chosen the axis z along the vector v and written ω̄ = k · v = k cos θ.

Although the momentum integral is quadratically divergent, the angular integral van-

ishes and the three-dimensional integral is zero. The zero result is also expected from

Eq. (3.2.9) because the vacuum dielectric functions (3.2.10) are purely real. Thus we

see that the parton’s self-interaction does not contribute to the equilibrium energy loss

formula (3.2.8) or (3.2.9). In Sec. 3.4 we will show that this is not the case when the

energy loss calculation is formulated as an initial value problem.

The result (3.2.8) or (3.2.9) agrees with the expression obtained in [72] using kinetic

theory, and with the result for the energy loss due to soft collisions calculated in the

HTL approximation [74], see also the textbook [53]. However, this is not the complete

energy loss but rather the soft contribution to it when the wave vector k is of the order

of the Debye mass. Physically it corresponds to an interaction of the test parton with

soft collective excitations of the plasma medium.
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The incompleteness of the formula (3.2.8) or (3.2.9) is signaled by the logarithmic di-

vergence as |k| → ∞. To obtain the complete collisional energy loss, the formula (3.2.8)

should be combined with the hard contribution describing elastic collisions of the test

parton with plasma constituents with momentum transfer much exceeding the Debye

mass. The hard contribution is not ultraviolet divergent, as the maximal momentum

transfer is constrained by the collision kinematics. The soft contribution to the energy

loss depends logarithmically on the upper cut-off kmax divided by the Debye mass m,

while the hard contribution has a logarithmic dependence on the energy of the parton

E divided by the same cut-off kmax. The energy loss thus equals

dE

dt
= X ln

(
kmax

m

)
+ Y ln

(
E

kmax

)
. (3.2.12)

It can be shown [53, 74] that the coefficients X,Y are equal to each other and therefore

dE

dt
= X ln

(
E

m

)
. (3.2.13)

The result is that the cut-offs cancel and one obtains a good approximation to the energy

loss from the soft contribution with the parton energy used as an upper cut-off.

As was mentioned on the begining of this chapter, the energy loss in anisotropic QGP

was computed previously by Romatschke and Strickland [83]. Their result can be ob-

tained from our formula (3.2.4) by using an anisotropic propagator for Σ−1(ω,k) and

including only the contribution from the pole ω = ω̄. Clearly this procedure produces a

result for the energy loss that is completely time independent. As we will see in the subse-

quent sections, the energy loss in anisotropic plasma is actually strongly time dependent

because of the unstable modes.

In order to compare our results for the energy loss in an unstable plasma to the cor-

responding equilibrium result, we have computed numerically the integral (3.2.8) in

spherical coordinates. As already mentioned, the integral is logarithmically divergent at

large k ≡ |k|, so we introduce a cutoff k ≤ kmax. When studying plasmas with massless

constituents, the mass m given by the Eq. (2.4.3) can be chosen as the only dimensionful

parameter, and we therefore use a system of units where all dimensionful quantities are

rescaled by the appropriate powers of m.

In Fig. 3.1 we show the energy loss in isotropic QGP divided by g2m2 as a function of
kmax
m computed for CR = Nc = 3 which corresponds to a gluon. Since the energy loss is

divided by g2m2 we do not need to specify the value of g. The numbers from this figure

will serve as a reference for our results on the energy loss in unstable plasmas.
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Figure 3.1: The parton energy loss per unit time in equilibrium plasma as a function
of kmax.

3.3 Initial conditions

When the plasma is anisotropic, the propagator ∆(ω,k) = Σ−1(ω,k) has poles in the

upper half-plane of complex ω which correspond to instabilities, and the contributions

to the energy loss from these poles grow exponentially in time. This means that the

terms in Eq. (3.1.23) which contain the initial values of fields D0 and B0 are amplified

by an exponential factor and, in contrast to the equilibrium situation, they cannot, in

general, be neglected.

3.3.1 Uncorrelated initial conditions

The simplest choice of the initial condition is D0 = B0 = 0, which means that the energy

loss formula (3.1.10) becomes

dE(t)

dt
= ig2CRv

ivj
∫

d3k

(2π)3

∫ ∞+iσ

−∞+iσ

dω

2πi
e−i(ω−ω̄)t ω

ω − ω̄
(Σ−1)ij(ω,k), (3.3.1)

where we have used the relation (3.2.3) to average over colors. In fact, the formula (3.3.1)

holds for a whole class of initial conditions whenever D0 and B0 are independent of the

test parton’s current. In this case, the contributions to the energy loss (3.1.23) which
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contain D0 and B0 are linear in the parton’s color charge Qa, and consequently they

vanish when color averaging is performed using the relation (3.2.2).

Physically this result can be understood as follows. Let us consider an electron moving

in an external electromagnetic field which is independent of the current generated by the

electron. The energy loss formula is given by the electromagnetic analog of the formula

(3.1.8) where E
(
t, r(t)

)
is the external electric field along the electron’s trajectory. The

electromagnetic analog of averaging over the parton’s color is the averaging over the

possible charges of a hypothetical electron which could carry either negative or positive

charge, or the averaging over the charges of an electron and a positron. If an electron’s

energy increases by ∆E in the time interval ∆t, a positron’s energy would decreases by

−∆E in the same field configuration and time interval. Therefore, after averaging over

charges, the net change in the energy is zero.

It is important to remember that the contribution to the energy loss from the first

term in (3.1.23), which is proportional to the current and not the initial fields, is non

zero, even when uncorrelated initial conditions are used. Mathematically, this happens

because this term is proportional to the square of the charge. In an electromagnetic

plasma, e2 is strictly positive, and in a QCD plasma the factor QaQa does not give

zero when averaged (see equation (3.2.3)). Physically we see that the energy losses of

the electron and positron have same sign because they are not interacting with external

fields which are independent of their currents, but instead with the electric fields which

they have induced in the medium. We also note that the procedure of averaging over

electric charges looks similar to that of averaging over colors but the physical situation is

quite different. A color charge is gauge dependent and consequently it is not a physical

observable. Therefore, the averaging over colors must be performed in order for the

energy loss to have a physical meaning.

It is interesting to note that we can obtain the same energy loss formula (3.3.1) in a

different way. If we multiply the current in equation (3.1.9) by a step function Θ(t) and

then repeat the whole calculation using the usual two-sided Fourier transformation, the

identical result is found. The initial fields D0 and B0 do not appear in the two-sided

Fourier transformed Maxwell equations, and the two-sided Fourier transform of the

current with the additional step function is the same as the one-sided Fourier transform

of original current. Although the same result can be obtained in two different ways, the

physical interpretation of the two procedures is somewhat different. Using the two-sided

transformation with the current multiplied by a step function, we assume that the plasma

system exists for all times but the test parton appears in the plasma at t = 0. This was

the problem studied in the papers [85, 86]. When the one-sided Fourier transformation

is used, it is understood that we observe the whole system, which includes the plasma
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and the test parton, starting only at t = 0. The initial values of the fields D0 and B0 can

be chosen to be independent of the parton’s color state, but they could also be specified

differently. In the next section we consider a class of nontrivial initial conditions for

which the fields D0 and B0 are strongly correlated with the current generated by the

test parton.

3.3.2 Correlated initial conditions

We have shown in the previous section that if the initial conditions are chosen in any

way that is independent of the parton’s current, they will not contribute to the energy

loss. In this section we will consider another kind of initial conditions. First we note that

although initial conditions are always required to solve differential equations, they are

usually determined by physical arguments which go beyond the differential equations

under consideration. We argue below that in the energy loss calculation, a kind of cor-

related initial conditions might be the most physical. We imagine that a process which

is responsible for the occurrence of a test parton in a plasma system at the time t = 0,

also polarizes the medium producing a chromodynamic field which is then correlated

with the parton’s color state. We would like to see if the energy loss is sensitive to this

kind of correlated initial condition. To derive an upper limit on the effect, we assume

that the parton enters the system in the remote past at t = −∞, observing that the

parton’s current (3.1.9) can be extended to the time interval from −∞ to ∞. Flying

across the plasma, the parton polarizes the medium and induces a chromodynamic field.

The initial fields D0 and B0 are identified with the induced fields at t = 0.

To determine the fields D0 and B0 we solve the Maxwell equations (3.1.4) and (3.1.5)

using a normal (two-sided) Fourier transform with the time integral from −∞ to∞. We

use tildes to indicate that a two-sided Fourier transform was taken, which means that,

for example, D(ω,k) and D̃(ω,k) are different functions of ω but the same function of

k. However, we note that ε̃(ω,k) = ε(ω,k) and Σ̃−1(ω,k) = Σ−1(ω,k) because these

functions obey the retarded initial condition and therefore ε(t, r) = Σ−1(t, r) = 0 for

t < 0. Solving the equations (3.1.4) and (3.1.5) using a two-sided Fourier transform

produces the result in equation (3.1.20) with Eia and jja tilded and Bl
0a = Dj

0a = 0,

since the initial fields in Eq. (3.1.20) come from the t = 0 lower limit in the one-sided

Fourier transform. Using the tilded version of the material relation (3.1.15), the electric

induction is

D̃i
a(ω,k) = −i ω εij(ω,k)(Σ−1)jk(ω,k)j̃ka(ω,k), (3.3.2)
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where the two-sided Fourier transform of the current in equation (3.1.9) is

j̃a(ω,k) = gQav2πδ(ω − ω̄). (3.3.3)

Taking the inverse two-sided Fourier transform of the result (3.3.2), we obtain

Di
a(t,k) =

∫ ∞
−∞

dω

2π
e−iωtD̃i

a(ω,k) = −ie−iω̄tgQaω̄ εij(ω̄,k)(Σ−1)jk(ω̄,k)vk, (3.3.4)

and setting t = 0, we arrive at

Di
0a(k) = −igQaω̄ εij(ω̄,k)(Σ−1)jk(ω̄,k)vk. (3.3.5)

Using the same method we obtain the initial value of the chromomagnetic field

Bi
0a(k) = −igQaεijkkj(Σ−1)kl(ω̄,k)vl. (3.3.6)

The formulae (3.3.5) and (3.3.6) provide maximally correlated initial conditions. In order

to consider initial conditions with differing degrees of correlation, we will multiply the

initial fields (3.3.5) and (3.3.6) by a phase factor cosα ∈ [−1, 1]. The choices cosα = ±1

correspond to maximally correlated and anticorrelated initial fields. These two extreme

cases provide limits on the possible effects of correlated initial conditions. We substitute

the initial fields D0 and B0 given by Eqs. (3.3.5) and (3.3.6) into the energy loss formula

(3.1.23) and insert the phase factor cosα as described above. After averaging over the

parton’s color we obtain

dE(t)

dt
= ig2CRv

ivl
∫

d3k

(2π)3

∫ ∞+iσ

−∞+iσ

dω

2πi
e−i(ω−ω̄)t(Σ−1)ij(ω,k) (3.3.7)

×
{
ωδjl

ω − ω̄
− cosα

[
(kjkk − k2δjk)(Σ−1)kl(ω̄,k)− ω ω̄ εjk(ω̄,k)(Σ−1)kl(ω̄,k)

]}
.

This result, which reduces to the formula (3.3.1) when cosα = 0, will be further studied

in the subsequent sections for two different unstable plasma systems.
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3.4 Self-interactions

As already discussed in detail in the context of the equilibrium result (3.2.9), the energy

loss formulae include the effect of self-interaction – also called the vacuum effect – which

needs to be subtracted if it is non-zero. In this section we calculate the self-interaction

contribution to the energy loss given by Eq. (3.3.1) and (3.3.7). We follow the same

method as in Sec. 3.2. We evaluate the formulae (3.3.1) and (3.3.7) with the propagator

Σ−1(ω,k) in the form (3.2.7) with the vacuum dielectric functions (3.2.10). However,

the calculation is not the same as the one done in Sec. 3.2. The equilibrium result (3.2.9)

only has a contribution from the pole ω = ω̄, but the energy loss formulae (3.3.1) and

(3.3.7) with a vacuum propagator also include contributions from the poles ω = 0 and

ω = ±|k|, which make the effect of self-interaction time dependent. We discuss only the

vacuum contribution to the energy loss formula for correlated initial conditions (3.3.7),

because the corresponding result for uncorrelated initial conditions can be obtained by

setting cosα = 0.

To compute the vacuum effect we substitute into the formula (3.3.7) the vacuum prop-

agator (3.2.7) with εL(ω,k) = εT (ω,k) = 1. In this way one finds the longitudinal

part

dEL(t)

dt

∣∣∣∣
vacuum

= ig2CR

∫
d3k

(2π)3

ω̄

k2

∫ ∞+iσ

−∞+iσ

dω

2πi

e−i(ω−ω̄)t

ω

[ ω̄

ω − ω̄
+ cosα

]
,

(3.4.1)

and the transverse one

dET (t)

dt

∣∣∣∣
vacuum

= ig2CR

∫
d3k

(2π)3

(
1− ω̄2

k2

)∫ ∞+iσ

−∞+iσ

dω

2πi

e−i(ω−ω̄)t

ω2 − k2
(3.4.2)

×
[

ω

ω − ω̄
+ cosα

ωω̄ + k2

ω̄2 − k2

]
,

where k ≡ |k|. Performing the integral over ω, which includes contributions from the

poles at ω = ω̄ and ω = 0 in case of the longitudinal part (3.4.1) and the poles at ω = ω̄

and ω = ±k in case of the transverse one (3.4.2), we obtain

dEL(t)

dt

∣∣∣∣
vacuum

= −(1− cosα)g2CR

∫
d3k

(2π)3

ω̄ sin(ω̄t)

k2
, (3.4.3)

dET (t)

dt

∣∣∣∣
vacuum

= −(1− cosα)
ig2CR

2

∫
d3k

(2π)3

(
1− ω̄2

k2

)
×
(e−i(k−ω̄)t

k − ω̄
− ei(k+ω̄)t

k + ω̄

)
. (3.4.4)

– 102 –



Chapter 3 Energy Loss

We note that the pole ω = ω̄ does not actually contribute to the transverse part (3.4.4)

because the integrand is odd as a function of k and therefore it gives zero when inte-

grated.

The integrals over k are calculated in spherical coordinates using an upper cut-off kmax.

Summing the longitudinal and transverse parts, the complete vacuum contribution to

the energy loss formula (3.3.7) equals

dE(t)

dt

∣∣∣∣
vacuum

= −(1− cosα)g2CR
4π2t2

[
2
(
Si(kmaxt)− sin(kmaxt)

)
(3.4.5)

+
(
2kmaxt− Si(2kmaxt)

)]
,

where Si(z) is the sine integral defined as

Si(z) ≡
∫ z

0
dx

sin(x)

x
. (3.4.6)

The first term in the expression (3.4.5) is the longitudinal part and the second term

represents the transverse piece which linearly diverges with increasing kmax. Both the

longitudinal and transverse contributions go to zero when t→ 0. The vacuum contribu-

tion to the energy loss formula with uncorrelated initial conditions (3.3.1) is given by

Eq. (3.4.5) with cosα = 0. From Eq. (3.4.5) it is clear that the vacuum contribution is

not zero unless we choose maximally correlated initial conditions (for which cosα = 1),

and therefore the self-interaction effect must be subtracted from the energy loss formula

in all other cases.
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3.5 Unstable plasmas

The energy loss in isotropic plasmas has been calculated from the general formula

(3.1.23) in section 3.2. In this section we develop our formalism to apply it to a general

class of anisotropic momentum distributions of plasma constituents which was intro-

duced in Sec. 2.4.1. The dispersion relations of the collective modes, which are needed to

compute the energy loss, are derived in Chapter 2 for all possible degrees of deformation

from the extremely prolate case, when the momentum distribution is infinitely elongated

in one direction, to the extremely oblate distribution, which is infinitely squeezed in one

direction.

To compute the energy loss using the formula (3.1.23) we have to invert the matrix Σ

defined by Eq. (2.1.2) or (2.1.11), which is the inverse gluon propagator in the temporal

axial gauge. In isotropic plasmas the matrix depends on only one vector k. It can be de-

composed into transverse and longitudinal components and is therefore easily inverted

giving Eq. (3.2.7). We will now consider momentum distributions of the plasma con-

stituents of the form (2.4.1). In this case the matrix Σ depends on two vectors k and n,

and it is symmetric Σij = Σji. The procedure of the inversion of a matrix is introduced

in the Sec. 2.1.2

In our derivation of the energy loss formula and our calculation of energy loss for isotropic

systems, we have mostly used the terminology of classical electrodynamics of continuous

media, with the dielectric tensor playing a key role. From now on we will switch to

the language of quantum field theory and make use of the polarisation tensor and gluon

propagator which were already introduced in Eqs. (2.1.5) and (2.1.11). The two languages

are equivalent as QCD in the hard-loop approximation is essentially classical but the

terminology of quantum field theory is more commonly used when working with the

distribution (2.4.1). Then, one refers to Σ−1 as to the gluon propagator in the temporal

axial gauge. In Appendix A.4 we show that this gauge is particularly convenient in the

energy loss calculations.

In order to simplify the notation, in the rest of this section we omit the arguments which

denote dependence on the wave vector. For example, we write α(ω,k) as α(ω), ∆ij(ω,k)

as ∆ij(ω), etc.
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3.5.1 Integrand

Substituting the propagator (2.1.17) into the energy loss formula (3.3.7) and contracting

all indices, we obtain an expression that we will use to do calculations for the extremely

prolate and extremely oblate momentum distributions presented in Sec. 3.6. We use a

spherical coordinate system with the z-axis along the anisotropy vector n. The angles θ

and φ are the zenithal and azimuthal angles of the vector k, and Θ is the angle between

the velocity of the test parton v and the anisotropy vector n. In our coordinate system

the vectors n, v and k are

n = (0, 0, 1),

v = (sin Θ, 0, cos Θ), (3.5.1)

k = k(sin θ cosφ, sin θ sinφ, cos θ).

The energy loss formula (3.3.7) is written as

dE(t)

dt
= g2CR

∫
d3k

(2π)3

∫ ∞+iσ

−∞+iσ

dω

2πi
e−it(ω−ω̄) Integrand , (3.5.2)

where the integrand is divided into several different pieces by writing it as

Integrand = Aj +Gj + cosα
(
Aic +Gic + [AA]ic + [GG]ic

)
. (3.5.3)

The two terms Aj and Gj are the contributions from the first term in the square bracket

in (3.1.23) which comes from the parton current (3.1.14). When the initial fields are set

to zero, or when we have uncorrelated initial conditions, these are the only terms that

survive. They are proportional to ∆−1
A (ω) and ∆−1

G (ω). The terms Aic, Gic, [AA]ic, [GG]ic

are the contributions from the second two terms in the square bracket in Eq. (3.1.23) and

come from the initial fields. They are proportional to ∆A(ω), ∆G(ω), ∆A(ω) ∆A(ω̄) and

∆G(ω) ∆G(ω̄). In the future we will refer to the first two terms in the formula (3.5.2) as

‘current contributions’, and the last four terms will be called ‘field contributions’. After

performing all contractions we obtain

Aj ≡
ω̂
[
ω̃2(x2 − 1)− x2 − Y 2 + 1

]
(1− x2)(ω̂ − ω̃)∆−1

A (ω)
,

Gj ≡ ω̂
Y 2β′(ω)− ω̃(x2 − 1)

{
ω̃
[
k2(ω̂2 − 1)− α(ω)− γ(ω)

]
+ 2kY δ(ω)

}
(1− x2) (ω̂ − ω̂)∆−1

G (ω)
,

Aic ≡
( ω̂
ω̃
− 1
)
Aj ,
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Gic ≡
(
ω̂
ω̃ − 1

)
Gj ,

[AA]ic ≡ k2(ω̂−ω̃)(ω̂+ω̃)

ω̂ω̃∆−1
A (ω̄)

Aj ,

[GG]ic ≡ k2(ω̂+ω̃)1

ω̃(1−x2)∆−1
G (ω)∆−1

G (ω̄)

(
kY ω̃

(
1− x2

) [
β′(ω̄)δ(ω) + β′(ω)δ(ω̄)

]
+ Y 2β′(ω)β′(ω̄) + k2ω̃2

(
1− x2

)2
δ(ω)δ(ω̄)

)
,

where we have used the symbols

x ≡ cos θ, ω̂ ≡ ω/k, ω̃ ≡ ω̄/k, Y ≡ cos Θ− xω̃ ,

and defined the function β′(ω) ≡ ω2 − β(ω).
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3.6 Extremely prolate and oblate plasmas

In the early stages of a heavy ion collision, when partons are initially released from the

incoming nucleons, the momentum distribution is strongly elongated along the beam -

it has a prolate shape. Due to free streaming the distribution evolves in the local rest

frame to a form which is squeezed along the beam - it has oblate shape. In this section

we consider the extremely prolate and extremely oblate distributions which are defined

by the Eq. (2.4.9) and (2.4.8), respectively, with the normalisation condition (2.4.10).

The spectrum of the collective modes of the extremely prolate and extremely oblate

plasmas is analysed in detail in Sec. 2.7 and 2.8, respectively. Here we use the obtained

results to calculate the energy loss separately in Sec. 3.6.1 and 3.6.2 for extremely prolate

and oblate system.

As discussed in Sec. 3.1, we calculate the frequency integral of the energy loss formula

(3.5.2) with a contour in the lower half plane that encloses all singularities of the integral.

The significance of the imaginary modes can be seen immediately. Denoting the real part

of an imaginary mode generically as γ, it is clear that the residue of a pure imaginary

mode contains a factor eγt which grows exponentially with time. However, the magnitude

of the unstable mode is small (in mass units) and the region of phase space for which the

unstable mode exists is quite limited. Since there is also an oscillatory factor e−iω̄t under

the integral (3.1.23), it is not clear whether the energy loss will increase exponentially

as a function of time.

The integral over the wave vector k is taken numerically in spherical coordinates with

the z-axis along the anisotropy vector n. Since the integral is ultraviolet divergent,

we regulate it by introducing an upper cut-off at some finite momentum kmax. For both

oblate and prolate plasmas, there is a potential divergence when an imaginary mode goes

to zero, as the wave vector approaches its threshold value. However, these divergences

cancel exactly (sometimes in combination with the residue from the pole at ω = 0).

There are divergences that depend on the azimuthal angle when ω̄ = 0 and ω̄ = ±ω−
but they are odd and can be regulated using a principal part prescription.

The current contribution to the energy loss, or the energy loss with the uncorrelated

initial condition, is very oscillatory and hard to calculate, but we have checked that it

is of the order of the equilibrium energy loss discussed in Sec. 3.2 and its magnitude is

much smaller than the field contribution. In Sec. 2.7 we show the current contribution

for one example.

In the two subsequent sections we present our numerical results on the energy loss in

the extremely prolate and extremely oblate plasmas. In all our numerical calculations
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CR = 3, which corresponds to a gluon and our results are expressed in the units of m.

As in Sec. 3.2, the energy loss is divided by g2m2 and therefore the value of the coupling

constant g is not specified.

3.6.1 Extremely prolate plasma

In Fig. 3.2 we present the integrand of the energy loss in prolate plasma as a function

of k and cos θ for Θ = π/12. The integral over azimuthal angle φ has been done and the

small spikes at the top of the figure are produced by numerical issues. The meaning of

the angles θ, φ, Θ is explained by Eq. (3.5.1). Comparing this plot to that shown in

Fig. 2.19, one clearly sees the influence of the unstable mode - the integrand is large in

the domain of k and cos θ where the mode ω− exists.

Fig. 3.3 shows the current contribution to the energy loss (or the energy loss with

cosα = 0) as a function of time for Θ = 0◦. Since dE/dt is negative, the parton loses

energy. The two curves represent two values of kmax = 3m and kmax = 5m, one sees that

the magnitude of the energy loss increases with kmax. The result is time dependent but

it is approximately the same magnitude as the equilibrium energy loss at a given kmax.

As seen in Fig. 3.1, the equilibrium energy loss equals −0.12 g2m2 for kmax = 3m and

−0.18 g2m2 for kmax = 5m.

In Fig. 3.4 we show the field contribution to the energy loss (with cosα = 1) as a function

of time for kmax = 5m and four angles Θ between the parton velocity and the anisotropy

vector n. The energy loss dE/dt is positive and it increases exponentially with time,

showing the effect of the unstable modes. The parton thus gains the energy and the

magnitude of dE/dt at later times is much bigger than in equilibrium plasmas (see Fig.

3.1). The sign of the field contribution to the energy loss is determined by the sign of

the phase factor cosα and therefore if we change the initial condition from cosα = 1

to cosα = −1 we will get exponentially growing energy loss instead of exponentially

growing energy gain. Since the field contribution to the energy loss is much bigger than

the current contribution, the sign of dE/dt is actually controlled by the sign of cosα.

Therefore, the energy loss crucially depends on the initial condition.

One observes in Fig. 3.4 a strong directional dependence of the energy loss. For a prolate

system, the most important wave vectors are those for which k ⊥ n where the threshold

wave vector (2.7.9) goes to infinity, see also Fig. 2.19. When k ⊥ n the unstable mode

has an associated electric field that is parallel to the vector n. This point is explained

in Sec. 3.7. The energy transfer is most efficient when the electric field is parallel to the

velocity of the test parton (v ‖ E). Therefore, one expects the largest energy transfer

when v ‖ n.
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This argument is shown schematically in Fig. 3.10a and verified by the results presented

in Fig. 3.4 which demonstrates that the magnitude of the energy loss is maximal at

Θ = 0◦ and rapidly decays when the angle Θ grows.

In Fig. 3.5 we show the energy loss as a function of kmax for Θ = 0◦ and two times

t = 5/m and t = 8/m. The energy loss oscillates slightly, but the kmax dependence can

be roughly approximated as logkmax, as in the equilibrium case. As discussed in Sec. 3.2,

the kmax divergence indicates a breakdown of the classical theory.
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Figure 3.2: The integrand of the energy loss with cosα = 1 in extremely prolate
plasma as a function of k and cos θ for Θ = π/12 and t = 8/m. The integral over

azimuthal angle φ is performed.
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3.6.2 Extremely oblate plasma

Calculations in oblate plasma are much more difficult than those in prolate plasma be-

cause the components of the polarisation tensor defined by Eq. (2.1.12) have a more

complicated structure. They contain square roots that are not defined along the section

of the real axis where the arguments of the roots are negative. There are therefore contri-

butions to the frequency integral from the discontinuities between the upper and lower

sides of the cuts that are difficult to calculate. We have checked for several cases that

they are small when compared to the pole contributions and we therefore neglect them.

One consequence of this more complicated structure is that the spectrum of collective

modes is richer - there two unstable modes instead of one as in the case of prolate plasma.

It is impossible to solve the dispersion equations analytically and one can only obtain

the dispersion relations numerically. Finally, there is a technical complication related to

the fact that the dominant contribution to the energy loss in the oblate plasma comes

from the domain of wave vectors k which are almost parallel to the anisotropy vector

n. When k ‖ n we have nT = 0 and the decomposition (2.1.8) is ill defined. This occurs

because when k||n the matrix Σ does not depend on two independent vectors k and n

but only on one vector k or n, for details see Sec. 2.8.1

In our calculation the domain where k||n was treated analytically and combined with

the results of the numerical computation, as described below. Because of these technical

difficulties, we give numerical results for the extremely oblate plasma only for a rather

small value of kmax = 2m. The equilibrium energy loss for this value of kmax, which will

be used as a reference point, equals −0.079 g2m2, see Fig. 3.1.

As in the case of prolate plasma, the current contribution is significantly smaller than

the field contribution. The latter is shown in Fig. 3.6 when the parton’s momentum

is perpendicular to the anisotropy vector n (Θ = π/2). The red points represent the

contribution due to the A-modes, blue points represent the G-modes and black gives the

sum. The black is not exactly the sum of the red and blue because in the calculation

with all modes the points at x = ±1, which are obtained analytically, are combined

and integrated together with the numerical data which is calculated over the range

−0.9996 < x < 0.9996. One observes in Fig. 3.6 that the unstable A-mode is responsible

for the largest effect. Since the field contribution to the energy loss is much bigger than

the current contribution, the sign of the energy loss is determined by the sign of cosα

which expresses the dependence on the initial conditions. dE/dt is negative for cosα < 0

and it is positive when cosα > 0. As seen in Fig. 3.6, the energy loss in oblate plasma

can be orders of magnitude bigger than in an equilibrium plasma with the same kmax.
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For an extremely oblate system, the most important wave vectors are those for which

k ‖ n, since both of the thresholds koA and koG go to infinity in this limit, see Eq. (2.8.6)-

(2.8.7). This behaviour is also shown in Figs. 2.24-2.25. As explained in Sec. 3.7, instead

of two different pairs of imaginary modes A and G, we have two pairs of identical modes

which are purely transverse when k ‖ n. The electric field associated with these modes

is perpendicular to both k and n. Since the energy loss is maximal when the parton

velocity is parallel to the electric field, such a situation occurs in the oblate system when

v is perpendicular to n, or Θ = π/2. This argument is shown schematically in Fig. 3.10b.

The effect is seen explicitly in Figs. 3.7-3.9. Fig. 3.7 shows that for both A- and G-modes

the energy loss is dominated by the region x ≈ 1 and the right panel proves that when

x = 1 the biggest effect is observed when Θ = π/2. Fig. 3.9 presents the energy loss as a

function of Θ for t = 25/m. The figure shows that dE/dt drops rapidly when Θ becomes

smaller than π/2.
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Figure 3.6: The field contribution to the energy loss in oblate plasma as a function of
time for Θ = π/2. The red lines corresponds to the effect of A-modes, blue the G-modes,

and the black line represents the sum.
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3.7 Important configurations

In this section we look at the prolate system in the special case that the wave vector of

the unstable mode is perpendicular to the direction of anisotropy (k ⊥ n) and the oblate

system when these two vectors are parallel (k ‖ n). These regions of k are important

because they are the part of the domain of k for which the unstable modes exist up to

infinite k, see Eqs. (2.7.9), (2.8.6), (2.8.7) and Figs. 2.19 and 2.24-2.25. We will further

show that the energy loss is maximal when the velocity of the test parton v is parallel

to n in the prolate plasma and when v ⊥ n in the oblate one. The arguments discussed

in this section are illustrated in Fig. 3.10.

Figure 3.10: The largest wave vectors of unstable modes at different orientations. In
the prolate plasma (left panel) there is one unstable G-mode, which exists for 0◦ < θ ≤
90◦, and in oblate plasma (right panel) there are two unstable A- and G-modes which

exist for 0◦ ≤ θ < 90◦ and 0◦ ≤ θ < 45◦, respectively.

We start with the prolate system. The linearized Yang-Mills or Maxwell equations of

electric field E(ω,k) can be written as:

Σij(ω,k)Ej(ω,k) = 0, (3.7.1)

with the matrix Σ defined by Eq. (2.1.2). Since the equation (3.7.1) is homogeneous,

there are solutions if the determinant of the matrix Σ vanishes - this is the general

dispersion equation (2.1.1). When n = (0, 0, 1) and k = (k, 0, 0), Eq. (3.7.1) is
ω2 − β(ω) 0 0

0 ω2 − k2 − α(ω) 0

0 0 ω2 − k2 − α(ω)− γ(ω)



Ex(ω,k)

Ey(ω,k)

Ez(ω,k)

 = 0, (3.7.2)
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where

α(ω) = β(ω) =
m2

2
, γ(ω) =

m2(k2 − ω2)

2ω2
. (3.7.3)

The imaginary modes appear as solutions of the equation ω2 − k2 − α(ω) − γ(ω) = 0

which controls the z-component of the electric field. Therefore, the exponentially growing

component of E is parallel to n. Since the maximal energy loss occurs when v ‖ E, the

maximal effect requires v ‖ n.

Let us now consider the oblate plasma. When n = (0, 0, 1) and k = (0, 0, k), Eq. (3.7.1)

is 
ω2 − k2 − α(ω) 0 0

0 ω2 − k2 − α(ω) 0

0 0 ω2 − β(ω)



Ex(ω,k)

Ey(ω,k)

Ez(ω,k)

 = 0, (3.7.4)

where the coefficients α(ω) and β(ω) are given by Eq. (2.8.10). The imaginary modes

appear as solutions of the equation
(
ω2 − k2 − α(ω)

)2
= 0 which controls the x- and

y-components of the electric field. Therefore, the exponentially growing component of E

is perpendicular to n and the maximal energy loss occurs when v ⊥ n.

The prolate plasma system produces the strongest instability when the wave vector k

is exactly transverse to the anisotropy vector n. For the oblate system the situation is

exactly reversed and the strongest instability occurs when the wave vector and anisotropy

vector are parallel to each other.

The orientation of the largest wave vectors of unstable modes is schematically shown in

Fig. 3.10. Since the A-modes are transverse, the chromoelectric field of the maximally

unstable A-mode in oblate plasma is perpendicular to n. The G-modes are, in general,

neither transverse nor longitudinal. However, the maximally unstable G-modes (with

k||n in oblate plasma and k ⊥ n in prolate plasma) are transverse. Therefore, for

G-modes in prolate systems and both A-modes and G-modes in oblate plasmas, the

chromoelectric field of the maximally unstable modes is aligned with the direction where

the momentum of plasma particles is maximal. This observation is important because

the dynamics of unstable systems are dominated by the fastest growing unstable modes.
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Conclusions and Outlook

In first part of the thesis, we have performed a systematic analysis of plasmons - gluon

collective modes - in quark-gluon plasma in case when the momentum distribution of

plasma constituent is anisotropic. We have considered two-stream system and the sys-

tem with distribution function which is obtained by either squeezing or stretching the

isotropic distribution. We have analysed the distributions with all degrees of deformation

along the beam axis from the extremely prolate distribution, which is infinitely elongated

along the beam, to the extremely oblate distribution, which is infinitely squeezed with

respect to the beam axis. In every case we have calculated the dispersion curves of com-

plete spectrum, in some cases numerically and when it has been possible analytically.

All obtained solutions of dispersion equations are either pure real or pure imaginary and

they always appear as pairs of partners with opposite sign. In all systems under consid-

eration, except the isotropic plasma, there are unstable modes (positive pure imaginary

solutions). Imaginary solutions exist only for certain wave vectors.

We have checked that even for arbitrarily small anisotropy unstable modes are present

- there is no threshold value of the anisotropy parameter for which instabilities develop.

However, the growth rate of instability decreases and the domain of wave vectors for

which unstable modes exist shrinks, as the anisotropy parameter decreases. However, our

work does not take into account inter-parton collisions which reduce the growth rates

and domains of wave vectors of the unstable modes and effectively stabilize systems of

sufficiently small anisotropy.

The analysis of collective modes in anisotropic plasmas is an important part of our study

because the results obtained in Chapter 2 have been used extensively in the analysis of

parton energy loss in unstable QGP presented in Chapter 3.
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In the second part of the thesis we have first derived the energy loss formula for a

high-energy parton flying across an unstable plasma which experiences a rapid temporal

evolution due to exponentially growing collective modes. Except special cases, the energy

loss formula includes an effect of self-interaction which must be subtracted to get a

physically meaningful result. Since the formula is found as the solution of an initial

value problem, initial values of the chromodynamic fields present in the plasma must be

chosen. In case of equilibrium plasmas, the initial conditions are ‘forgotten,’ and the well-

known formula of collisional energy loss is reproduced. When the initial conditions are

chosen in such a way that the initial fields are not correlated with the current generated

by the test parton, the parton typically looses energy and the magnitude of the energy

loss is comparable to that in an equilibrium plasma of the same mass parameter m

(2.4.10). When the initial chromodynamic field is induced by the parton, it can be either

accelerated or decelerated depending on the relative phase factor. With correlated initial

conditions, the magnitude of the energy loss grows exponentially in time and can much

exceed the absolute value of the energy loss in an equilibrium plasma.

We have derived an expression for the energy loss for arbitrarily prolate or oblate plas-

mas and performed numerical calculations for the specific examples of the extremely

prolate and extremely oblate systems. The energy loss is not only time dependent but it

appears to be also strongly directionally dependent. The configurations when the energy

loss is maximal in the prolate and oblate plasmas are illustrated in Fig. 3.10. In these

special configurations, the magnitude of the energy loss can be much bigger than that

in an equilibrium plasma. Beyond a narrow cone which is centered around the optimal

direction, the magnitude of energy loss rapidly drops.

One wonders what are possible consequences of our findings for the jet suppression

observed in relativistic heavy-ion collisions. Since a high-energy parton can be either

accelerated or decelerated in an unstable plasma, we expect that the energy loss strongly

fluctuates and that the fluctuations are particularly large in the configurations depicted

in Fig. 3.10.

Quark-gluon plasma at an early stage of a relativistic heavy-ion collision has initially

a prolate momentum distribution which evolves fast due to free streaming to an oblate

momentum distribution. During the process of equilibration the plasma is oblate and it

remains oblate in the subsequent evolution because of viscosity effects. Jet quenching

is observed at both RHIC and LHC at almost vanishing rapidity in the center of mass

of colliding nuclei. This configuration is just as shown in Fig. 3.10b where the jet mo-

mentum is transverse to the vector n. We suspect that the jet quenching pattern can be

changed when the jet axis is tilted in such a way that the near-side jet has a small but

positive (negative) rapidity while the away-side jet has a small but negative (positive)
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rapidity. The effect of unstable modes is then reduced and the energy-loss fluctuations

are expected be much smaller.

One should remember that we have discussed in this work only collisional energy loss.

There are simple arguments that indicate that radiative energy loss behaves very dif-

ferently. Radiative energy loss is controlled by the parameter q̂ which measures the

momentum broadening of a parton. This parameter is by definition positive and grows

exponentially in an unstable plasma, and so does the radiative energy loss, which is al-

ways negative. Therefore, before we draw a conclusion about a possible role of unstable

plasma in jet suppression phenomenology, the effects of both collisional and radiative

energy loss must be combined.

Our result rely on initial conditions chosen in a very specific way. In future studies a

method of averaging over initial conditions to mimic the situation in relativistic heavy-

ion collisions should be proposed.

Our approach to the energy loss in unstable QGP is fully classical and thus it is limited

to small momentum transfers. A quantum approach needs to be developed but it is

certainly a very complex initial value problem.

– 121 –





Appendix A

A.1 Classical dispersion equation

For the completeness of our discussion, we show here how the dispersion equation of

plasma waves is derived in classical electrodynamics. One starts with sourceless Maxwell

equations in a medium. After Fourier transformation to the space of frequencies ω and

wave vectors k, they give

kiDi(ω,k) = 0, εijkkjEk(ω,k) = ωBj(ω,k), (A.1.1)

kiBi(ω,k) = 0, εijkkjBk(ω,k) = −ωDj(ω,k), (A.1.2)

where E(ω,k), D(ω,k), B(ω,k) are the electric field, electric induction and magnetic

field, and εijk is the completely antisymmetric tensor. The electric induction is expressed

through the electric field by means of the electric permeability tensor εij(ω,k) as

Di(ω,k) = εij(ω,k)Ej(ω,k). (A.1.3)

Substituting the dielectric induction in the form (A.1.3) into Maxwell equations, one

finds the following equation of motion of the electric field

[
− k2δij + kikj + ω2εij(ω,k)

]
Ej(ω,k) = 0. (A.1.4)

Solutions of the homogeneous equation (A.1.4) exist, provided the determinant of the

matrix (2.1.2) vanishes. This is the dispersion equation (2.1.1).
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A.2 Components of polarization tensor

We present here the components α, β, γ, δ of the polarization tensor computed with the

ξ-distribution (2.4.1) and σ-distribution (2.4.6). The azimuthal and polar integrals in

the formulas (2.4.11)-(2.4.14) can be evaluated analytically, but the results are lengthy,

and not very enlightening. We give here only the expressions with the polar integral

unevaluated using the following notation: ω̂ ≡ ω/k, x ≡ cos θ and y ≡ cos θ′. We also

define

R± ≡
√
ω̂ + i0+ − xy ±

√
1− x2

√
1− y2. (A.2.1)

The results for the ξ-distribution (2.4.1), which appeared previously in [43] with the

normalization constant Cξ = 1, are

αξ(ω,k)

Cξm2
=

∫ 1

−1

dy(ξxy + ω̂)

(x2 − 1) (ξy2 + 1)2

[
x2 − 2xyω̂ + y2 + ω̂2 − 1

R+R−
+ xy − ω̂

]
, (A.2.2)

βξ(ω,k)

Cξm2
=

∫ 1

−1

dy ω̂

(ξy2 + 1)2

[
ω̂(ξxy + ω̂)

R+R−
+ (ξ + 1)(−x)y − ω̂

]
, (A.2.3)

γξ(ω,k)

Cξm2
=

∫ 1

−1

dy

(x2 − 1) (ξy2 + 1)2

[
−
((
x2 + 1

)
ω̂2 + x2 − 4xyω̂ + 2y2 − 1

)
(ξxy + ω̂)

R+R−

+ ξ
(
x2 + 1

)
y(xω̂ − y) + ω̂

(
x
(
x2 − 3

)
y +

(
x2 + 1

)
ω̂
) ]
,

(A.2.4)

k δξ(ω,k)

Cξm2
=

∫ 1

−1

dy

(x2 − 1) (ξy2 + 1)2

[
ω̂(xω̂ − y)(ξxy + ω̂)

R+R−

− ω̂
(
y
(
(ξ + 1)x2 − 1

)
+ xω̂

) ]
. (A.2.5)
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For the σ-distribution (2.4.6) we obtain

ασ(ω,k)

Cσm2
=

∫ 1

−1

dy((σ + 1)ω̂ − σxy)

(x2 − 1) (σ (y2 − 1)− 1)2

[
x2 − 2xyω̂ + y2 + ω̂2 − 1

R+R−
+ xy − ω̂

]
,

(A.2.6)

βσ(ω,k)

Cσm2
=

∫ 1

−1

dy ω̂

(σ (y2 − 1)− 1)2

[
ω̂((σ + 1)ω̂ − σxy)

R+R−
− (σ + 1)ω̂ − xy

]
, (A.2.7)

γσ(ω,k)

Cσm2
=

∫ 1

−1

dy

(x2 − 1) (σ (y2 − 1)− 1)2 (A.2.8)

[((
x2 + 1

)
ω̂2 + x2 − 4xyω̂ + 2y2 − 1

)
(σxy − (σ + 1)ω̂)

R+R−

+
(
(σ + 1)

(
x2 + 1

)
ω̂2 + σ

(
x2 + 1

)
y2 + xω̂y

(
−4σ + x2 − 3

)) ]
,

k δσ(ω,k)

Cσm2
=

∫ 1

−1

dy ω̂

(x2 − 1) (σ (y2 − 1)− 1)2

[
(xω̂ − y)((σ + 1)ω̂ − σxy)

R+R−
(A.2.9)

− y
(
−σ + x2 − 1

)
− (σ + 1)xω̂

]
.

As explained in Sec. 2.4.2 and summarized in Eq. (2.4.18), all four coefficients are real

when ω is real and ω2 > k2. When ω is real but ω2 < k2, the coefficients become

complex. For imaginary valued ω, all four coefficients are real. In Fig. A.1-A.4 we show

the components of the polarization tensor ασ, βσ, γσ, k δσ as functions of ω/k for σ = 10

and θ = 40◦. In each part of the figure, we show the real and imaginary parts of the

component for real ω and the pure real components for imaginary ω. For reference, the

curves for α and β in isotropic plasma are also shown. The blue (dotted) line is the real

part with real ω, the green (dashed) line is the imaginary part with real ω, and the red

(solid) line is the pure real result when ω is imaginary. The lighter lines in the panels

presenting the coefficients ασ and βσ correspond to the isotropic distribution.

The polarization tensors of the ξ- and σ-distribution exhibit a kind of symmetrical

structure when they are plotted as functions of x ≡ cos θ. One finds the following

pattern. The real part of Xξ, where X is either α, β or γ, has a maximum when the

real part of Xσ has a minimum and vice versa. The imaginary parts of Xξ and Xσ are

maximal and minimal, respectively, for the same values of x. In case of δ, the positions of

the maxima of real parts coincide and the maximum of the imaginary part of δξ coincides

with the minimum of the imaginary part of δσ and vice versa. These results are shown

in Fig. A.5-A.10 for the coefficients α and β.
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Figure A.1: The component ασ of the polarization tensor obtained from the σ-
distribution with σ = 10 and θ = 40◦.
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Figure A.2: The component βσ of the polarization tensor obtained from the σ-
distribution with σ = 10 and θ = 40◦.
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Figure A.3: The component γσ of the polarization tensor obtained from the σ-
distribution with σ = 10 and θ = 40◦.
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Figure A.4: The component k δσ of the polarization tensor obtained from the σ-
distribution with σ = 10 and θ = 40◦.
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Figure A.5: The real component α of the polarization tensor with σ = 10 (red (solid)
line) and ξ=10 (blue (dotted) line) versus x ≡ cos θ with ω/k = 0.8 or ω/k = 0.8 i.

0

0.2

0 0.5-1.0 -0.5 1.0
-0.2

       

]

σ=10 ξ=10

Figure A.6: The real component β of the polarization tensor with σ = 10 (red (solid)
line) and ξ=10 (blue (dotted) line) versus x ≡ cos θ with ω/k = 0.8 or ω/k = 0.8 i.
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Figure A.7: The imaginary component α of the polarization tensor with σ = 10
(red (solid) line) and ξ=10 (blue (dotted) line) versus x ≡ cos θ with ω/k = 0.8 or

ω/k = 0.8 i.
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Figure A.8: The imaginary component β of the polarization tensor with σ = 10
(red (solid) line) and ξ=10 (blue (dotted) line) versus x ≡ cos θ with ω/k = 0.8 or

ω/k = 0.8 i.
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Figure A.9: The component α of the polarization tensor obtained with σ− and ξ−
distribution for σ = ξ = 10 and for imaginary ω.
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Figure A.10: The component β of the polarization tensor obtained with σ− and ξ−
distribution for σ = ξ = 10 and for imaginary ω.
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A.3 Reality of energy loss

We prove here that the energy loss (3.1.23) is real for any momentum distribution that

satisfies the mirror symmetry f(p) = f(−p). For this purpose we take the complex

conjugate of the formula (3.1.23) and obtain

dE∗(t)

dt
= −gQavi

∫
d3k

(2π)3

∫ ∞−iσ
−∞−iσ

dω

2πi
ei(ω−ω̄)t∆∗ij(ω,k) (A.3.1)

×
[
− iωgQavj

ω − ω̄
+ εjklkkB∗l0a(k)− ωD∗j0a(k)

]
,

where the inverse matrix Σ−1 is replaced by the retarded propagator ∆. Now we change

the integration variables ω → −ω and k→ −k which gives

dE∗(t)

dt
= −gQavi

∫
d3k

(2π)3

∫ ∞+iσ

−∞+iσ

dω

2πi
e−i(ω−ω̄)t∆∗ij(−ω,−k) (A.3.2)

×
[
− iωgQavj

ω − ω̄
− εjklkkB∗l0a(−k) + ωD∗j0a(−k)

]
,

Since the initial fields B0a(r) and D0a(r) are pure real in coordinate space, we have

B0a(k) = B∗0a(−k), D0a(k) = D∗0a(−k). (A.3.3)

In Sec. 2.1.2 we have proved that for mirror-symmetric momentum distributions, the

retarded propagator defined by Eq. (2.1.11) satisfies the relations

<∆ij(−ω,−k) = <∆ij(ω,k), =∆ij(−ω,−k) = −=∆ij(ω,k),

which give

∆∗ij(−ω,−k) = ∆ij(ω,k). (A.3.4)

Using the relations (A.3.3) and (A.3.4), the right side of Eq. (A.3.2) is identical to the

right side of Eq. (3.1.23), which completes the proof that the energy loss given by the

formula (3.1.23) is real.
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A.4 Temporal axial and Feynman-Lorentz gauges

In this appendix we show that the temporal axial gauge is particularly convenient for

the energy loss calculation because it naturally provides gauge independent results. In

contrast, we show that in Feynman-Lorentz gauge current conservation must be ex-

plicitly enforced to remove gauge dependence. To simplify the problem, we consider an

electromagnetic plasma.

The electromagnetic analog of the energy loss formula (3.1.23) is clearly gauge invariant,

as the derivation of the formula is gauge invariant at every step. The gauge dependent

potential Aµ is not used at all and the energy loss is written in a form that depends only

on the dielectric tensor and electric and magnetic fields which are physical quantities.

However, when we switch to the terminology of quantum field theory and the inverse

dielectric tensor is replaced by the photon propagator in the temporal axial gauge, the

gauge independence of the formula (3.1.23) is not evident any more. In this appendix we

will show that although the energy loss formula looks different in the Feynman-Lorentz

gauge, it is still gauge invariant. We also explain why temporal axial gauge is much more

convenient for the energy loss calculation. In this appendix we use the usual (two-sided)

Fourier transformation and not the one-sided transformation which was used in Sec. 3.1.

To further simplify the problem we will consider not the whole energy loss formula but

only the electric field generated by the test particle in vacuum. We will solve the Maxwell

equation

∂µF
µν(x) = jν(x), (A.4.1)

where x = (t, r), Fµν ≡ ∂µAν − ∂νAµ and jµ is the particle’s current. The electric field,

which is the physical quantity of interest, is expressed through the four-potential as

E(x) = −∇A0(x)− Ȧ(x), (A.4.2)

which in the momentum space is

E(k) = −ikA0(k) + iωA(k). (A.4.3)

We note that k = (ω,k) denotes here the four-vector and not |k|.

In order to solve equation (A.4.1) for the potential, one must choose a gauge. The

resulting solution has the form A = propagator × current. Both the propagator and the

vector potential are gauge dependent. However, if we calculate the electric field from

the potential using Eq. (A.4.2) or (A.4.3), the result must be gauge independent. This

is true when current conservation is imposed.
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We start by considering Feynman-Lorentz gauge (∂µA
µ = 0) in which the Maxwell

equation (A.4.1) is

�Aµ(x) = jν(x), (A.4.4)

and the (two-sided) Fourier transformed solution reads

Aµ(k) = ∆µν
FLG(k)jν(k), (A.4.5)

where

∆µν
FLG(k) = − gµν

k2 + isgn(ω)0+
= gµνDFLG(k) (A.4.6)

is the retarded photon propagator in the Feynman-Lorentz gauge. From equations (A.4.3),

(A.4.5) and (A.4.6) we obtain the electric field generated by the current jν(k)

Ei(k) = −iDFLG(k)
(
kij0(k)− ωji(k)

)
. (A.4.7)

Now we consider the temporal axial gauge (A0 = 0). The (two-sided) Fourier transformed

field equation (A.4.1) splits into two equations

−ωkiAi(k) = j0(k), (A.4.8)[
(−ω2 + k2)δij − kikj ]Aj(k) = ji(k). (A.4.9)

The solution of the second equation (A.4.9) is

Ai(k) = −∆ij
TAG(k)jj(k), (A.4.10)

where

∆ij
TAG(k) =

1

ω2 + isgn(ω)0+

kikj

k2
+

1

ω2 − k2 + isgn(ω)0+

(
δij − kikj

k2

)
(A.4.11)

is the retarded photon propagator in the temporal axial gauge. Substituting the solution

(A.4.10) into Eq. (A.4.3) and using (A0 = 0) we obtain

Ei(k) = −iω∆ij
TAG(k)jj(k). (A.4.12)

We have found that in Feynman-Lorentz gauge the electric field is given by Eq. (A.4.7)

and in temporal axial gauge it is given by Eq. (A.4.12) with the additional constraint

(A.4.8). The two equations for the electric field look different, but if current conservation

is imposed they are in fact the same. Current conservation gives the relation

ωj0(k) = k · j(k) . (A.4.13)
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Using (A.4.13) the electric field obtained from the Feynman-Lorentz gauge (A.4.7) can

be written in the form

Ei(k) = − i
ω
DFLG(k)

(
kikj − ω2δij

)
jj(k) . (A.4.14)

Equations (A.4.6) and (A.4.11) give the equality

∆ij
TAG(k) =

1

ω2
DFLG(k)

(
kikj − ω2δij

)
. (A.4.15)

Using Eq. (A.4.15) it is easy to see that the expressions (A.4.12) and (A.4.14) are

equivalent.

When working in the temporal axial gauge, current conservation merely tells us that the

solution (A.4.10) satisfies Eq. (A.4.8) automatically and the electric field is naturally

gauge independent. Equivalently, the electric field in (A.4.12) can be derived from the

Maxwell equations (3.1.4) and (3.1.5) without any reference to the four-potential Aµ.

In contrast, if Feynman-Lorentz gauge is used, current conservation must be explicitly

enforced. The authors of [86] resolved this problem by modifying somewhat artificially

the parton’s current.
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