
Improvement of Single Pion Production
for T2K experiment simulation tools

Monireh Kabirnezhad

Supervisor: prof. Jan Sobczyk

Co-supervisors: Dr Pawel Przewlocki

National Center for Nuclear Research

This dissertation is submitted for the degree of
Doctor of Philosophy

January 2020





Acknowledgements

Having the theoretical background, I found it so challenging to start your Ph.D. project with
an experimental group and to join a successful collaboration. Luckily I met wonderful people
who have guided me with their wisdom, shared their knowledge and helped me to have a
unique experience.

First of all, I would like to thanks, My supervisor, Prof. Ewa Rondio, who has patiently
supported me in every aspect of my work. Apart from the challenging project, working
in experimental high energy physics with an Iranian passport, you face several visa issue.
Only a wise person with a great soul, standing on your side can give you enough strength
to continue. I am also extremely grateful for the support of Dr. Pawel Przewlocky, without
whom I might still be struggling with programming. Also thanks to the rest of Warsaw
neutrino group who has offered help and care to me.

I have received invaluable advice from Prof. Jan Sobczyk over the last few months.
His detailed review of draft chapters improved the description of my work and ensured the
veracity of every piece of the calculation, and for this, I would like to thank him. I am also
thankful to Dr. Jakub Zmuda and Dr. Krzysztof Graczyk for useful discussions on the initial
stage of work, Dr. Raul Gonzalez Jimenezand who validated my result, and Prof. Juan
Nieves for valuable comments on my work.

I am glad to be a member of T2K experiment and working with excellent researchers. I
would like to thank T2K collaborators who have offered important advice along the way, but
I am particularly grateful to Prof. Kevin McFarland who has supported my work loudly and
publicly, where I gained encouragement and inspiration for the rest of my career. Working
with Clarence Wret was a great time with his unique humor and enthusiast. I would like
to thanks him for sharing his knowledge with me generously. Also thanks to Dr. Daniel
Cherdack whose advice was very helpful to make important decisions, and Dr. Callum
Wilkinson who has kindly discussed with me during the collaboration meeting.



iv

Finally, I would like to thank my friends and family for the continuous support they have
given me through the years, and for being with me during hard times.



Abstract

Neutrino-nucleon interactions that produce a single pion in the final-state are of critical
importance to accelerator based neutrino experiments. These Single Pion Production (SPP)
channels make up the largest fraction of the inclusive neutrino-nucleus cross section in the
1−3 GeV range, a region covered by most accelerator based neutrino beams.

Models of SPP cross section processes are required to accurately predict the number
and topology of observed charged-current (CC) neutrino interactions, and to estimate the
dominant source of neutral-current (NC) backgrounds, where a charged (neutral) pion is
confused for a final-state muon (electron). These experiments make use of nuclear targets,
however, the foundation of neutrino-nucleus interaction models are neutrino-nucleon reaction
processes like the one described in this paper.

This work represents an extension of the single pion production model proposed by
D.Rein [9]. The model consists of resonant pion production and nonresonant background
contributions coming from three Born diagrams in the helicity basis. The new work includes
lepton mass effects, and nonresonance interaction is described by five diagrams as it is
proposed in [10]. The main challenge of the recent work is to calculate them in helicity basis
in order to study the interference effect of resonance and non-resonance interactions. The
interference contribution has a visible effects on cross-section especially on pion angular
distributions.

The resonant interaction is Rein-Sehgal model [7] with one exception on the sign of
resonances. We choose different signs for few resonances, to get the best description of data.

The full model has very good agreement with all available data and it is implemented in
NEUT to be used for the future T2K analysis.
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Chapter 1

Introduction

The three neutrino flavors, νe, νµ and ντ , in the Standard Model are massless. They are all
experimentally observed and the number of neutrino species was already predicted from the
Z0 decay width, long before the last (ντ ) neutrino was detected by DONUT experiment at
Fermilab in 2000 [82].

The discovery of neutrino oscillation at Super-Kamiokande (1998) [79] in Japan and then
at SNO (2001) [80] experiment in Canada (2015 Nobel prize awarded to this discovery), was
an evidence of new physics beyond the Standard Model, as it demonstrates that neutrinos
have mass.

In the three-neutrino mixing model, the neutrino flavour eigenstate |να⟩, where α =

e,µ,τ , is a linear superposition of the mass eigenstates |ν j⟩, where j = 1,2,3. The mixing
matrix in the leptonic sector is called PMNS matrix, where relates the neutrino mass eigenstate
to the flavour eigenstates.

|να⟩=U∗
α j|ν j⟩, (1.1)

where U is Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix, which is a unitary
matrix. Applying this unitarity constraint allows us to parametrise the matrix in terms of three
mixing angles (θ12,θ23,θ13) and a CP violating phase, δcp. We assume neutrinos are Dirac
particles meaning they are not their own antiparticles. If neutrinos are Majorana particles,
then U should be multiplied by diag

(
eiα1, eiα2 , 1

)
where α1 and α2 are Majorana phase

factors. The Majorana phases do not affect neutrino oscillations so can be neglected in this
discussion.
The |ν j⟩ are the Hamiltonian’s eigenstates with eigenvalue E j =

√
p2 +m2

j , propagating in
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time as plane waves:
|ν j(t)⟩= e−iE jt |ν j⟩, (1.2)

Thus the evolution in time of the flavour eigenstates is:

|να(t)⟩= ∑
β=e,µ,τ

(
3

∑
j=1

U∗
α je

−iE jtUβ j

)
|νβ ⟩. (1.3)

Therefore a neutrino created in a flavour eigenstate, να , along with the corresponding lepton
of flavour α , can later be measured to have different flavour. The probability is:

Pνα→νβ
= |⟨ νβ |να(t) ⟩|2 =

3

∑
k=1

3

∑
j=1

U∗
αkUβkUα jU∗

β je
−i(Ek−E j)t . (1.4)

Depending on whether the neutrino flavour in the final state is similar to the one in the initial
state or not, the neutrino oscillation measurements have two disappearance (να → να ) and
appearance (να → νβ ) modes. In the relativistic limit ( where t ≈ L) and for light neutrino
masses we have:

E =
√

P2 +m2 ≈ p+ m2

2p ≈ p+ m2

2E ,

=⇒ e−i(Ek−E j)t = e−im2
j L/2E , (1.5)

therefore:

Pνα→νβ
=

3

∑
k=1

3

∑
j=1

U∗
αkUβkUα jU∗

β j exp

(
−i

∆m2
k jL

2E

)
. (1.6)

where ∆m2
k j = m2

k −m2
j . Equation 1.6 clearly shows that the oscillation probability depends

on the mixing matrix, mass-squared differences, the traveled distance, L, and the neutrino
energy E.
Measuring all the oscillation parameters at the same time can be very difficult, however
the mass splittings differ by several orders of magnitude, ∆m2

21 ≪ |∆m2
31| ≃ |∆m2

32|, so the
three-neutrino case can often be factorised to two-neutrino cases. Atmospheric and beam
experiments can determine the magnitude of ∆m2

32 and θ23. Solar and reactor measurements
can determine ∆m2

21 and θ12. Finally, and most recently, beam and reactor experiments have
determined the magnitude of θ13 and found it to be nonzero.

Table 1.1 summarises the most up-to-date measurements of all of the neutrino oscilla-
tion parameters. This is all we know from the measurements of the neutrino oscillation



3

Table 1.1 The best-fit values and 3σ allowed ranges of the 3-neutrino oscillation parameters
for normal (inverted), derived from a global fit of the current neutrino oscillation data (from
[78]). Note that the mass ordering is known for ∆m2

21 and ∆m2 = m2
3 − (m2

2 +m2
1)/2 ≃

∆m2
32 ≃ ∆m2

31.

Parameters best-fit 3σ

∆m2
21[10−5eV 2] 7.37 6.93−7.97

∆m2[10−3eV 2] 2.50 (2.46) 2.37−2.63 (2.33−2.60)
sin2

θ12 0.297 0.250−0.354
sin2

θ23, ∆m2 > 0 0.437 0.379−0.616
sin2

θ23, ∆m2 < 0 0.569 0.383−0.637
sin2

θ13, ∆m2 > 0 0.0214 0.0185−0.0246
sin2

θ13, ∆m2 < 0 0.0218 0.0186−0.0248

experiments, however there are still few fundamental questions need to be addressed, such
as:

• There are currently no measurements of δCP, although some hints to its value ex-
ist. Does the behavior of neutrinos violate CP? What is a value of δCP in neutrino
oscillations?

• Atmospheric and beam experiments can only determine the magnitude of ∆m2
32. What

is the sign of ∆m2
32? In other words is the hierarchy of neutrino masses normal or

inverted?

where the future improvements in the precision measurements of currently running and future
neutrino experiments can lead us to the answer.

Neutrino oscillation experiments measure the charged-current and neutral-current event
rates in their detectors, which can generically be expressed as

R = Φ×σ × ε ×P(να → νβ ), (1.7)

where R is the event rate, Φ is the neutrino flux, σ is the neutrino cross section and ε is the
detector efficiency. It is obvious from this equation that in order to measure the neutrino
oscillation probability P(να → νβ ), the neutrino flux and cross section must be known with
a good precision.

To perform oscillation analyses, experiments use Monte Carlo simulations to make predic-
tions. This will involve a simulation of the interactions in the detector which usually requires
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an interaction simulation followed by a detector simulation. All oscillation experiments rely
on interaction generators to perform oscillation measurements, so the measurements can
have some dependence on the model used.

Many neutrino experiments such as T2K, take advantage of a two-detectors configura-
tion to constrain uncertainties in neutrino flux and neutrino cross sections. The main goal
of cross-section programs at T2K near detector is to understand the neutrino interaction
cross-sections and to validate models, in order to increase the precision in measurements.
There has also been experiments dedicated to the cross-section measurements and problem
of neutrino interactions such as MINERνA [71].

The oscillation probability depends directly on the neutrino energy, however, the neutrino
energy cannot be measured directly. In experiments such as T2K, the two-body kinematics
involved in a pure charged-current quasi-elastic (CCQE) event (detected in the near detector)
allows an approximate reconstruction of the neutrino energy using only the final state lepton
kinematics1.

Single Pion Production (SPP) is the main background for CCQE interaction largely due
to the missing of pion in the detector. This background is predicted directly from simulation
and rely on SPP model. Here are two examples that the pion misidentification can effect on
the T2K measurements.

1. π± can misidentified with µ±, because they have similar mass and charge. This can
change the event rate of νµ in the disappearance (νµ → νµ ) mode, and as explained
before, it can also change the neutrino energy reconstruction.

2. π0 and e± can produce similar rings in Cherenkov detector. This is very important in
the appearance (νµ → νe) mode of the T2K measurements2.

Therefore having a good model that can predict the production rate of single pions is crucial
for T2K and other neutrino experiments.
Recent cross-section measurements of single pion production show significant discrepancies
with models in the low energy region and the lack of an accurate model can be a reason
for the discrepancies. Implementing a new model that has better agreements with data can
reduce systematic uncertainties in neutrino oscillation measurements which are necessary
to achieve the main goal of neutrino experiments such as the determination of leptonic CP

1CCQE cross-section is the dominant process in T2K. It will be introduced in chapter 2.
2This will be discussed later with Super-Kamiokande detector, in subsection 7.1.3.
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phase and neutrino mass hierarchy.

Pions can be produced either by the decay of nucleon resonances or directly by nonreso-
nant interaction. The main concern in theoretical discussions of the single pion production is
the description of nonresonant background model and its interference with resonant inter-
actions that is sometimes missing in neutrino MC generators. From the above-mentioned
reasons, developing neutrino MC generators is very important for precision neutrino oscilla-
tion measurements.

The main motivation of this thesis is developing a model for single pion production in
neutrino-nucleon interaction, suitable for neutrino MC generators to address the described
needs of neutrino experiments.

1.1 Structure of this thesis

All neutrino experiments rely on Monte Carlo neutrino interaction generators. Neutrino
generators implement all interaction models to simulate the neutrino cross-section in the
detector medium. The T2K near detectors highlights the importance of having accurate
neutrino interaction models in neutrino Monte Carlo generators. A general description of
neutrino interactions and models currently used by neutrino generators such as NEUT and
GENIE, the official neutrino Monte Carlo generators will be given in chapter 2.

The neutrino-nucleon single pion production model is a part of the cross-section models
in NEUT and GENIE. The current single pion production model in NEUT and GENIE is
missing a reliable model for nonresonant interaction. An accurate model for single pion
production should include resonant and non-resonant interactions, calculated in a common
framework in order to include the interference effects. The single pion production model
proposed in this work consist of resonant and nonresonant interactions based on helicity
amplitudes. Therefore a general formalism is needed to add the two interactions coherently.
This will be introduced in chapter 3, and the general cross-section computation in terms of
helicity amplitudes will be given at the end of this chapter.

The main discussion in chapter 3 is about the helicity amplitudes calculation for resonant
and nonresonant interactions. We will also discuss about the isospin coefficients which is
very important to calculate the charged and neutral current single pion production channels
(given in Equation 3.1 - 3.4). Knowing the helicity amplitudes with their relative isospin
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coefficients for all channels it is straightforward to calculate the single pion cross-section as
it will be discussed at the end of this chapter.

A very important step for a new model is to validate it with the available data in order to
see how reliable it is. To show the predictions of the proposed model, it is implemented in
cross-section calculation code which is capable of predicting the differential cross-section
for all single pion production channels. In chapter 5 the model predictions will be compared
with the bubble chamber data on the light nucleus. This data is also used to adjust the free
parameters in the resonant interaction.

The new model we will propose in this thesis is for neutrino-nucleon interaction. In
order to compare it with the recent cross-section measurements on nuclear target one need
to include the nuclear effects. The nominal nuclear models are already implemented in the
T2K neutrino generators. Chapter 6, provides all information about the current single pion
production model in the NEUT and GENIE. Then we describe the new model implementation
in the NEUT. We also show the validation plots and NEUT prediction with the current and
new model on free nucleon and nucleus.

Finally in chapter 7 we will show the NEUT comparison before and after the model
implementation, with single pion production data from T2K, MINERνA and MiniBooNE on
various targets.



Chapter 2

Neutrino Scattering

Neutrino can only interact via the weak interaction. In charged-current interaction mediated
by W exchange, the neutrino turns into a charged lepton, while no charge is transferred in
neutral-current interaction via a Z boson. In neutrino-nucleus scattering, depends of energy, a
neutrino can interact with a nucleus as a whole, an individual nucleon, or with quarks inside
nucleon.
In reality, describing neutrino-nucleus interaction can be very difficult especially at the inter-
mediate neutrino energy (which is the region of interest for accelerator neutrino experiments),
because nucleus is a complicated environment. A complete neutrino-nucleus interaction
model involves a number of ingredients:

1. A nuclear model, describing the initial state of nucleons within the nucleus.

2. A cross-section model.

3. A model relating the products of the initial interaction to the outgoing final state
particles.

Items 1 and 2 are initial state interaction and item 3 is Final State Interaction (FSI).
The current cross-section measurements have been made on nuclear targets and in the inter-
mediate range of energy (few GeV). Therefore Monte Carlo neutrino interaction generators
should include all required models in order to simulate the neutrino interactions in detectors1.
A review of generator and theoretical model predictions is given in [20].
In this work, we will talk about the interaction models in two Monte Carlo (MC) neutrino
interaction generators: NEUT [56], the official generator of the Super-Kamiokande and T2K
collaborations; and GENIE [57], which is widely used by neutrino experiments.

1in recent years there has been development for more generic generators to be used by few neutrino
experiments, like GENIE.
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This chapter is devoted to neutrino interaction, and the relevant models which are used in the
NEUT and GENIE.

2.1 Neutrino interaction model

The bubble chamber in old experiments (see chapter 5) were usually filled with light nucleus
like hydrogen or deuterium, which is a very good target to investigate the models. The
existing bubble chamber data is still being used for the validation of the cross-section models.
In this section, we start with cross-section models for neutrino scattering from nucleon,
parton and nucleus. Then we will discuss about the nuclear effects i.e. nuclear model and the
final state interaction.

2.1.1 Cross-section model

One way of classifying neutrino-nucleon interactions can be based on the type of final state
particles appearing. In Figure 2.1 if particle X is a single nucleon it is called elastic or
quasi-elastic scattering. If X is a pair of Nπ hadrons, it is called single pion production. In
Deep Inelastic Scattering (DIS) where a neutrino interacts with quarks, a nucleon can be
with any other particles (including single pion) in the final state.
Figure 2.2 shows the contribution of neutrino interaction in different range of energy, where

W

N

νl

X

l

Z

N

ν

X

ν

Fig. 2.1 Neutrino-nucleon interaction via W boson in the charged current interaction (left)
and neutral-current interaction by a Z boson exchange (right). X can be a single particle or
more than one particles in different types of neutrino interaction.

quasi-elastic and single pion production contribute to the low energy and the DIS is dominant
at high energy. The modeling of transition region between pion production and DIS can
be particularly difficult at the intermediate energy where there is the possibility for overlap
between the models.
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Elastic and Quasi-elastic Scattering

Elastic scattering off a nucleon is a process without charge exchange (neutral current):

νl + p → νl + p ν̄l + p → ν̄l + p

νl +n → νl +n ν̄l +n → ν̄l +n (2.1)

while charged current quasi-elastic (CCQE) scattering is an interaction with charged lepton
in the final state:

νl +n → l−+ p ν̄l + p → l++n (2.2)

The CCQE interaction is dominant at Eν ∼ 1GeV (see Figure 2.2). Cross-section models for
CCQE and NCEL can be found in References [23, 24]

Single pion production on nucleon (SPP)

Single pion production has significant contribution at energy of few-GeV (see Figure 2.2). It
is the simplest inelastic neutrino scattering off a nucleon that produce a lepton and a pair of
Nπ hadrons in the final state. Single pion in neutrino-nucleon scattering can be produced
directly or via decay of resonances.
In resonant interaction, single pion mainly produce via decay of ∆ resonance. ∆=

(
∆++ ∆+ ∆0 ∆−

)
produce in CC and NC (anti-) neutrino interaction:

νl + p → l−+∆
++

ν̄l + p → l++∆
0

νl +n → l−+∆
+

ν̄l +n → l++∆
−

νl + p → νl +∆
+

ν̄l + p → ν̄l +∆
+

νl +n → νl +∆
0

ν̄l +n → ν̄l +∆
0, (2.3)

then it decays into final states containing a pion and a nucleon2.
Similarly Nπ pair can be produced directly via nonresonant interaction. Therefore we call
both reactions as single pion production which is going to be discussed later. All single pion
production channels are given in Eq. 3.1 - 3.4.
Several models have been proposed (since 70s) in the literature concerning single pion
production. Most of them include only ∆ resonance and nonresonant interaction, but they

2∆ is the lightest resonance, but several other heavier resonances can also contribute.
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differ in the coupling, form-factor, etc. The most complete unitarized model3 in the ∆

region is Sato-Lee model [4]. In terms of nonresonant interaction, Adler model [8] uses
the three Born diagram based on linear sigma model [11] and HNV model [10] use the five
Feynman diagram based on non-linear σ -model. These diagrams have nucleon and pion
propagators, however, in Reference [3] there are more diagrams with other mesons like ρ or
ω propagators. There are other models that include higher I = 1

2 resonances. In particular a
model by Fogli-Nardulli [2] include three more resonances (S11, P11, D13) to extend the πN
invariant mass region (up to W = 1.6 GeV) in the model.
A model for nonresonant interaction is usually a set of Feynman diagrams with defined
couplings, but it is sometimes missing in the single pion production models. For instance
the Rein-Sehgal model [7] includes 18 resonances up to W = 2 GeV, but there is no model
for nonresonant interaction instead they introduce extra ad hoc helicity amplitudes for
nonresonant background with I = 1

2 . Later a model by Rein [9] includes three Born diagrams
to the Rein-Sehgal model.
Both GENIE and NEUT use the Rein-Sehgal model [7] for single pion production. Detailed
information about the RS model can be found in chapter 4, and the model implementation in
NEUT and GENIE will be discussed in section 6.1.

Deep Inelastic Scattering (DIS)

At high energy neutrino can interact with individual partons within the nucleon, thus breaking
apart the nucleon and generally producing a jet of hadrons. At high energy the cross-section
is dominant by deep inelastic scattering (see Figure 2.2), and it is well defined in this region.
On the other hand for lower energies of a few GeV, other reactions especially single pion
production contribute, therefore it is more difficult to describe it in this region.
For relatively high invariant mass events, both NEUT and GENIE rely on the PYTHIA
program [30] to model the reaction of the incoming W(Z) boson on partons inside the
nucleon. Figure 2.2 shows the cross-section measurements for the three types of interactions
that CCQE and single pion production contribute to the low energy and the main contribution
at high energy comes from DIS.
The DIS model in NEUT4 is based on parton distribution from References [25, 26] up to
W < 2 GeV and PYTHIA for W > 2 GeV. In the actual calculation to obtain the cross-
section in NEUT, the probability function of pion multiplicity is used, which is a function
of W and gives the probability to generate more than one pion, in the small W region
(W < 2 GeV). Therefore, single pions in this region only come from the single pion

3Unitarized model will be discussed in section 4.3.
4This paragraph is taken from Reference [56].
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Fig. 2.2 Total neutrino cross-sections (per nucleon) for νµN → µX divided by Eν (as a
function of the neutrino energy), for quasi-elastic scattering, single-π production and deep-
inelastic scattering (DIS) compared to data. Figure is from Reference [22].

production in section 2.1.1. NEUT also use the experimental result to have consistency
between these two regions.

Coherent pion production

At low energy neutrino can also scatter from the nucleus as a whole, such that the nucleus
is left in its ground state after the interaction with a produced single pion. In CC and NC
coherent (anti-) neutrino interactions a single pion can be produced:

νl +A → νl +A+π
0

ν̄l +A → ν̄l +A+π
0

νl +A → l−+A+π
+

ν̄l +A → l++A+π
− (2.4)

Both NEUT and GENIE simulate coherent scattering with the Rein-Sehgal coherent model
[31] with improvement in from Reference [32].

2.1.2 Nuclear models

If a neutrino interacts with a bound nucleon inside the nucleus, we must take into account
the nuclear model to describe the initial an final states of nucleons within the nucleus. The
impulse approximation, where the neutrino interaction is with a single nucleon, separated
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from the rest of nucleus, is assumed in neutrino MC generators. The simplest nuclear model
which use the impulse approximation, describes the nucleus by a Fermi gas model. One
assumes the ground state to be a Fermi sea of protons and neutrons filled up completely to a
certain Fermi level defined by Fermi momentum, which has a flat distribution in momentum
space [27]. The Fermi gas model, based on this assumptions, is called global Fermi gas.
The alternative way to describe the nucleus in the Fermi gas picture is to use local density
approximation [27], which is called local Fermi gas. In this approach nuclear matter density
is described by the distribution ρ(r). The local Fermi momentum is assumed to depend on
ρ(r) (where r is a distance from the center of the nucleus) for proton and neutron:

p(p)
F (r) = h̄

(
3π

2
ρ(r)

Z
A

)1/3

p(n)F (r) = h̄
(

3π
2
ρ(r)

A−Z
A

)1/3

(2.5)

In the case of constant density (ρ(r) = A(4
3πR3)−1) you can find the Fermi momentum for

global Fermi gas model.
Since all states are filled up to the Fermi momentum, outgoing nucleons with a momentum
less than the Fermi momentum are Pauli blocked. The Pauli blocking is different between
global and local Fermi gas, since the Fermi momentum depends on ρ(r).
The Fermi gas model is still used in many analyses, However, it is well known from the
electron scattering data, that a sophisticated model called spectral function [28], provides
a more realistic description of the momentum and energy distributions of initial nucleons
within a nucleus than the Fermi gas models.

2.1.3 Final state interaction (FSI)

Initially produced hadrons can interact with themselves and with other nucleons in targets on
their way out of the nuclear target. Therefore the initially produced hadrons can be different
than the outgoing particles being detected at the end. Final state interactions of pions are
essential in the analysis of neutrino data:

1. Pion absorption: Initially produced pion can be absorbed, for instance via NNπ →
NN.

2. Charge exchange: Pion can also exchange its charge, for instance; π+N → π0 p.

3. Pion production: Pion can be created for instance from inelastic nucleon-nucleon
collisions in the medium; NN → NNπ .
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Final state interactions of pions are essential in the analysis of neutrino data. There is a
significant contribution coming from single pion production (see Figure 2.2). If the pion is
absorbed in the nuclear matter, the event is misidentified from CCQE which is very important
in the oscillation analysis. To estimate this background, it is necessary to have a good
theoretical model for both, pion production in the primary vertex and FSI.
Cascade models are used by both NEUT [56, 29] and GENIE [57, 58], but implementations
are slightly different for different kinds of hadrons.





Chapter 3

Neutrino-Induced Single Pion
Production

Single pions in neutrino-nucleon interactions are dominantly produced through resonance
decay but they also can be produced directly via non-resonant interactions (see Fig. 3.1).

There are three channels for Charged Current (CC) neutrino-nucleon and similarly for

R

W (Z)

N1

ν

N2

π

l

W (Z)

N1

ν

N2

π

l

Fig. 3.1 Single pion production through resonance decay (left) and non-resonant interaction
(right)

antineutrino-nucleon interactions with single pion production at final states:

νµ + p → µ pπ+ ,

νµ +n → µ pπ0 ,

νµ +n → µnπ+ , (3.1)

ν̄µ +n → µ+nπ−

ν̄µ + p → µ+nπ0

ν̄µ + p → µ+pπ− (3.2)

and four channels for NC neutrino-nucleon and antineutrino-nucleon interactions :
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ν + p → ν pπ0 ,

ν + p → νnπ+ ,

ν +n → νnπ0 ,

ν +n → ν pπ− , (3.3)

ν̄ + p → ν̄ pπ0

ν̄ + p → ν̄nπ+

ν̄ +n → ν̄nπ0

ν̄ +n → ν̄ pπ−. (3.4)

In this chapter we introduce helicity amplitudes, the amplitudes for different helicities
of incident and outgoing particles, for SPP interactions. The helicity amplitudes of the
individual resonances were given in [5, 6] for the first time, and the idea has been extended
by Rein and Sehgal [7] to all resonances up to W = 2GeV . The helicity amplitudes of
non-resonant interaction were introduced in [8] and [9] and this chapter is based on this idea,
but unlike [8] and [9], the lepton mass is not neglected in this thesis.
Main goal in this chapter is to define a suitable framework in section 3.1 for both resonant
and non-resonant interactions and calculate a general form for helicity amplitudes (subsec-
tion 3.1.3). Finally, the description of cross-section in terms of helicity amplitudes will be
presented in section 3.2. In this section two alternative cross section will be presented in
terms of pion angle and angular momentum (subsection 3.2.1).

3.1 General Formalism

Single pion production in neutrino-nucleon interactions can be generally defined as:

ν(k1)+N(p1)−→ l(k2)N(p2)π(q), (3.5)

where l is a charged lepton in the CC interactions, or neutrino in the NC interaction. The
particle’s momenta for single pion production are shown in Figure 3.2 where k1 and k2 are
the lepton four-momenta for incoming neutrino and outgoing leptons. p1 and p2 are the
nucleon four-momenta and q is the pion four-momentum. k = k1−k2 is momentum transfer,
and Q2 =−k2 =−(k1 − k2)

2

The transition amplitude for a charged current reaction is

MCC(νN → lN′
π) =

GF√
2

cosθC ε
ρ

CC ⟨ N′
π| Jρ |N ⟩ (3.6)

where θC is Cabibbo angle and ερ is lepton charged current

ε
ρ

CC = ūl(k2)γ
ρ(1− γ5)uν(k1). (3.7)
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W (k2)

N(p1)

ν(k1)

N(p2)

π(q)

l(k2)

Fig. 3.2 Single pion production off nucleons

(k̂1 × k̂2)× k̂

k̂1 × k̂2

k̂

q̂π

φπ = φ

θπ = θ

Fig. 3.3 Isobaric frame; the πN center of mass frame

For neutral-current (NC) the transition amplitude and the lepton current are the following:

MNC(νN → νN′
π) =

GF√
2

ε
ρ

NC ⟨ N′
π| Jρ |N ⟩

ε
ρ

NC =
1
2

ūν(k2)γ
ρ(1− γ5)uν(k1). (3.8)

The hadron current has different form in CC and NC interactions but in either case they can
be decomposed to vector and axial vector parts Jρ = JV

ρ − JA
ρ .

It is suitable to calculate the single pion production in the nucleon-pion rest frame that was pro-
posed by Adler [8] and is called isobaric or Adler frame. The definition of the frame is shown
in Figure 3.3, where lepton momentum transfer is along ẑ axis. The angle between momentum
transfer (ẑ direction) and the pion direction is pion polar angle (θ ), and φ is the pion azimuthal
angle. The four-momentum of particles in the SPP has the following definition in the isobaric
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frame:
k1 = (k01,k1) ,

p1 = (p01,p1) ,

q = (q0,q) ,

k2 = (k02,k2) ,

p2 = (p02,p2) ,

(3.9)

where k01 and k02 are the energy of leptons, p01 and p02 are the energy of nucleons and q0

is pion’s energy in the isobaric frame. We denote by ml , mπ and M, the lepton, pion and
nucleon masses respectively. most of the calculation in this work is done in the rest frame of
the final pion and nucleon (Figure 3.3), define by

q+p2 = k+p1 = 0, (3.10)

however a few times we use lab frame with a subscript "L" for particle’s Energy and momen-
tum.
Using Equation 3.10 we can define:

q0 =
W 2 +m2

π −M2

2W
,

p01 =
W 2 +M2 − k2

2W
,

k0 =
W 2 −M2 + k2

2W

p02 =
W 2 +M2 −m2

π

2W
,

(3.11)

where W 2 = (p2 +q)2 = (p1 + k)2.

3.1.1 Lepton currents

The outgoing charged lepton in CC interactions is massive, therefore k02 ̸= k2 in the general
case, but we can set the lepton mass to zero when outgoing lepton is neutrino in the NC
interactions.
Massive lepton can have both right-handed and left-handed helicities, therefore the lepton
current can be defined as:

ε
ρ

λ
= ūlλ (k2)γ

ρ(1− γ5)uνL(k1), (3.12)

where λ = −(+) stands for left(right)- handed helicity. The lepton current’s components
can be represented by two-dimensional Pauli matrices and spinors, if we substitute Dirac
matrices and Dirac spinors in terms of Pauli matrices and spinors according to our notation
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(see Appendix A):

ε
0
λ

= N1N∗
2 χ

†
(s2,λ )

(
1− σσσ .k2

k02 +ml

)(
1− σσσ .k1

k01

)
χs1 (3.13)

ε
j

λ
= N1N∗

2 χ
†
(s2,λ )

(
1− σσσ .kkk2

k02 +ml

)(
−σ

j) (1− σσσ .k1

k01

)
χs1. (3.14)

The lepton current’s components can be further calculated in the isobaric frame (Figure 3.3)
by knowing the lepton’s Pauli spinors in the isobaric frame given in Appendix B. De-
tailed calculation can be found in Appendix C, however we summarize the lepton current’s
components in the isobaric frame:

ε
0
λ

= 2λAλ

√
1−λcosδ

ε
1
λ

= 2λAλ

k01 −λ |K2|
|k|

√
1+λcosδ

ε
2
λ

= 2iAλ

√
1+λcosδ

ε
3
λ

= 2λAλ

k01 +λ |K2|
|k|

√
1−λcosδ , (3.15)

where δ is the angle between neutrino and charged lepton in Nπ rest frame, and

A± =
√

k01(k02 ∓|k2|). (3.16)

The lepton current ερ can be interpreted as the intermediate gauge boson’s polarization
vector. In the isobaric frame where momentum transfer is in the ẑ direction we have:

ε
ρ

λ
=CLλ

eρ

L +CRλ
eρ

R +Cλ eρ

λ
. (3.17)

where eL and eR are transverse polarizations perpendicular to momentum transfer, and eλ s
are along z direction in the isobaric system.
If we neglect the lepton mass, we can only have the left-handed current and kρερ = 0,
therefore the number of independent polarizations will be reduced to three:

ε
ρ

− =CL−eρ

L +CR−eρ

R +C−eρ

−. (3.18)

Transverse polarizations are unit vectors and have the following forms in the plane perpen-
dicular to the ẑ axis:

eρ

L =
1√
2

(
0 1 −i 0

)
eρ

R =
1√
2

(
0 −1 −i 0

)
, (3.19)
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and

CLλ
= eρ∗

L (ελ )ρ =
1√
2

(
ε

1
λ
+ iε2

λ

)
CRλ

= eρ∗
R (ελ )ρ =− 1√

2

(
ε

1
λ
− iε2

λ

)
. (3.20)

eλ should be a unit vector along ẑ. We can start with a general form:

eρ

− =
1√

|α2
−−β 2

−|

(
α− 0 0 β−

)
eρ

+ =
1√

|α2
+−β 2

+|

(
α+ 0 0 β+

)
. (3.21)

To calculate α∓, β∓ and C∓, we need to calculate ερkρ :

ε
ρ

−kρ = ε
0
−k0 − ε

3
−|k|

ε
ρ

+kρ = ε
0
+k0 − ε

3
+|k|

nonumber (3.22)

ε
ρ

−kρ = C−eρ

−kρ =
C−√

|α2
−−β 2

−|
(α−k0 −β−|k|)

ε
ρ

+kρ = C+eρ

+kρ =
C+√

|α2
+−β 2

+|
(α+k0 −β+|k|).

(3.23)

Equating Equation 3.22) with 3.23, we can extract:

α− = ε
0
−

β− = ε
3
−

α+ = ε
0
+

β+ = ε
3
+

(3.24)

Therefore:

eρ

λ
=

1√
|(ε0

λ
)2 − (ε3

λ
)2|

(
ε0

λ
0 0 ε3

λ

)
.

Cλ =
√

(ε0
λ
)2 − (ε3

λ
)2. (3.25)

Unlike transverse polarization, e± depend on lepton current’s helicity, therefore for right
handed lepton and only e− → e+. To summarize there are four independent polarizations
i.e. eL, eR and e± in the general case. Later we will use λk as four different gauge boson’s
helicities.
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3.1.2 Hadron Currents

Hadronic currents can be be decomposed to vector and axial vector parts

⟨ Nπ| Jρ |N ⟩= ⟨ Nπ| Jρ

V − Jρ

A |N ⟩ (3.26)

We can further decompose the vector and axial vector parts such as:

Jρ

V eλk
ρ =

6

∑
k=1

Vk(s, t,u) ūN(p2)Oλk(Vk)uN(p1)

Jρ

A eλk
ρ =

8

∑
k=1

Ak(s, t,u) ūN(p2)Oλk(Ak)uN(p1), (3.27)

where λk is gauge boson’s polarization, and it stands for eL, eR and e±.
Dirac equation allows us to have 16 independent Lorentz invariants O(Vk) and O(Ak), but
vector current conservation will reduce the number of O(Vk) to six. They are represented in
[8], and you can also find them in Table 3.1. Invariant amplitudes Vk and Ak can be calculated
once the interactions and diagrams are defined. They are generally a function of the following
invariant (Mandelstam) variables:

s = (p2 +q)2 = (p1 + k)2 =W 2,

t = (k−q)2 and u = (q− p1)
2. (3.28)

Using the representations of Dirac matrices and spinors in terms of two dimensional Pauli
matrices and spinors given in Appendix A, we can rewrite the right hand side of Equation 3.27
in terms of 2×2 matrices Σk and Λk:

Jρ

V eλk
ρ =

6

∑
k=1

Fk(s, t,u) χ
∗
2 Σ

λk
k χ1

Jρ

A eλk
ρ =

8

∑
k=1

Gk(s, t,u) χ
∗
2 Λ

λk
k χ1 (3.29)

where χ1 (χ2) is the Pauli spinor of the incident (outgoing) nucleon given in Appendix A,
and Σk and Λk are given in Table 3.2.
F λk

k and G λk
k can be found by equating the right hand sides of Equation 3.27 and Equa-

tion 3.29 for both vector and axial parts, but first we need to derive Oλk(Vk) and Oλk(Ak) in
terms of 2×2 Pauli matrices. Here we show the final result, but the derivation for Oλk(A1)
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Table 3.1 Lorentz Invariants

Vector invariants Axial vector Invariants

Oλk(V1) =
1
2

γ5

[
(γeλk)(γk)− (γk)(γeλk)

]
Oλk(V2) =−2γ5

[
(Peλk)(qk)− (Pk)(qeλk)

]
Oλk(V3) = γ5

[
(γeλk)(qk)− (γk)(qeλk)

]
Oλk(V4) = 2γ5

[
(γeλk)(Pk)− (γk)(Peλk)

]
−Mγ5

[
(γeλk)(γk)− (γk)(γeλk)

]
Oλk(V5) =−γ5

[
(keλk)(qk)− k2(qeλk)

]
Oλk(V6) = γ5

[
(keλk)(γk)− k2(γeλk)

]

Oλk(A1) =
1
2
[(γq)(γeλk)− (γeλk)(γq)]

Oλk(A2) = 2(eλkP)

Oλk(A3) = (eλkq)

Oλk(A4) = Mγeλk

Oλk(A5) =−2(γk)(eλkP)

Oλk(A6) =−(γk)(eλkq)

Oλk(A7) = (eλkk)

Oλk(A8) =−(γk)(eλkk)

P = 1/2(p1 + p2) and ek = ε0k0 −εεε.k. eλk can be eL, eR and e±.

can be found in Appendix D.

Oλk(V1) =14

[
(σσσeeeλk)k0 − (σσσk)eλk

0

]
− γ5

[
(σσσeeeλk)(σσσk)−eeeλk .k

]
Oλk(V2) =− γ5

[
(p1 + p2)e(qk)− (p1 + p2)k(qeλk)

]
Oλk(V3) =

[
k0(qeeeλk)− eλk

0 (qk)
]( 0 −12

12 0

)
+
[
(qeλk)(σσσk)− (qk)(σσσeeeλk)

](−12 0
0 12

)

Oλk(V4) =
[
k0(p1 +p2).eeeλk − eλk

0 (p1 −p2).k
]( 0 −12

12 0

)
(3.30)

+
[
(p1 + p2)e(σσσk)− (p1 + p2)k(σσσeeeλk)

](−12 0
0 12

)
−2MO(V1)

Oλk(V5) =
[
k2(eλkq)− (eλkk)(qk)

]( 0 12

12 0

)

Oλk(V6) =γ5

(
(eλkk)k0 − k2eλk

0 (eλkk)(k.σσσ)− k2(eλk .σσσ)

k2(eλk .σσσ)− (eλkk)(k.σσσ) k2e0 − (eλkk)k0

)

=

(
k2(eλk .σσσ)− (eλkk)(k.σσσ) k2e0 − (eλkk)k0

(eλkk)k0 − k2eλk
0 (eλkk)(k.σσσ)− k2(eλk .σσσ)

)
(3.31)
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Table 3.2 Isobaric frame amplitudes.

Vector Axial vector

Σ
λk
1 =σσσeeeλk − (σσσ k̂)(k̂eeeλk)

Σ
λk
2 =−i(σσσ q̂)σσσ .(k̂×eeeλk)

Σ
λk
3 = (σσσ k̂)(q̂eeeλk − (q̂k̂)(k̂eeeλk))

Σ
λk
4 = (σσσ q̂)(q̂eeeλk − (q̂k̂)(k̂eeeλk))

Σ
λk
5 = (σσσ k̂)k̂.(k0eeeλk − eλk

0 k)

Σ
λk
6 = (σσσ q̂)k̂.(k0eeeλk − eλk

0 k)

Λ
λk
1 =−σσσ q̂(σσσeeeλk − (σσσ k̂)(k̂eeeλk))

Λ
λk
2 = iσσσ .(k̂×eeeλk)

Λ
λk
3 =−(σσσ q̂)(σσσ k̂)(q̂eeeλk − (q̂k̂)(k̂eeeλk))

Λ
λk
4 =−(q̂eeeλk − (q̂k̂)(k̂eeeλk))

Λ
λk
5 =−(σσσ q̂)(σσσ k̂)(k̂eeeλk)

|k|
k0

Λ
λk
6 =−(k̂eeeλk)

|k|
k0

Λ
λk
7 =−(σσσ q̂)(σσσ k̂)(eλkk)/k0

Λ
λk
8 =−(eλkk)/k0

Aσσσ = Aiσi = A1σ1 +A2σ2 +A3σ3

Oλk(A1) =
[
(σσσq)eλk

0 − (σσσeeeλk)q0
]( 0 12

12 0

)
+
[
eeeλkq− (σσσq)(σσσeeeλk)

]
14

Oλk(A2) =(eλk p1)+(eλk p2) = eλk
0 (p01 + p02)−eeeλk .(p1 +p2)

Oλk(A3) =(eλkq)14

Oλk(A4) =M

(
eλk

0 12 −σσσ .eλk

σσσ .eeeλk −eλk
0 12

)

Oλk(A5) =− (eλk
0 (p01 + p02)−eeeλk .(p1 +p2))

(
k012 −σσσ .k
σσσ .k −k012

)

Oλk(A6) =− (eλk
0 q0 −eeeλk .q)

(
k012 −σσσ .k
σσσ .k −k012

)
Oλk(A7) =eλk

0 q0 −eeeλk .q

Oλk(A8) =− (eλkk)

(
k012 −σσσ .k
σσσ .k −k012

)
(3.32)

where eλk can be eL, eR and e±.
Appendix A shows the relation between Dirac spinors (matrices) and Pauli spinors (matrices).
In Appendix D we show the detailed calculation for Oλk(A1) and G λk

k s that are related to
Oλk(A1).
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3.1.3 Helicity amplitudes

Helicity amplitude can be defined with three indices: incident nucleon helicity (λ1), outgoing
nucleon helicity (λ2) and gauge boson’s polarization (λ1), while pion is spinless. From
Equation 3.12 Equation 3.6 for left and right handed lepton we have:

MCC(νN → lλ N′
π) =

GF√
2

cosθC ⟨ N′
π| ε

ρ

λ
Jρ |N ⟩

=
GF√

2
cosθC ⟨ N′

π| CLλ
eρ

LJρ +CRλ
eρ

RJρ +Cλ eρ

λ
Jρ |N ⟩. (3.33)

Using Equation 3.33, we can define the helicity amplitudes for vector and axial currents:

F̃λk
λ2,λ1

= ⟨ Nπ| eρ

λk
Vρ |N ⟩

G̃λk
λ2,λ1

= ⟨ Nπ| eρ

λk
Aρ |N ⟩ (3.34)

where

V =
1

2M
JV , A =

1
2M

JA, (3.35)

which is defined in [7] and is going to be useful in the next chapter.
For instance we can calculate F̃eR

1
2

1
2

for λ1 = λ2 = 1/2 and eR. From Equation 3.19 and
Figure 3.3 we have:

eR =
1√
2

(
−1 −i 0

)
k̂ = ẑ ⇒ k̂.eR = 0

q̂ = (sinθ cosφ)x̂+(sinθ sinφ)ŷ+ cosθ ẑ, (3.36)

then from Table 3.2 we can calculate all Σk like:

Σ1 = σσσ .eR −σ3(ẑ.eR) =− 2√
2

(
0 1
0 0

)

Σ2 = −i(σσσ .q̂)σσσ .(ẑ× eR) =
√

2

(
0 cosθ

0 sinθeiφ

)

Σ3 = σ3(−
1√
2

sinθ(cosφ + isinφ) =− 1√
2

sinθeiφ

(
1 0
0 −1

)

Σ4 = − 1√
2

sinθeiφ

(
cosθ sinθe−iφ

sinθeiφ −cosθ

)
(3.37)
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and Σ5 = Σ6 = 0. Therefore:

6

∑
k=1

Fk Σk = F1Σ1 +F2Σ2 +F3Σ3 +F4Σ4

=
1√
2

(
−(F3 sinθ +F4 sinθ cosθ)eiφ −2F1 +2F2 cosθ −F4 sin2

θ

−F4 sin2
θe2iφ (2F2 sinθ +F3 sinθ +F4 sinθ cosθ)eiφ

)
.

(3.38)

Knowing nucleon’s spinors χ1 = χ2 = |↑⟩ from Appendix B, and from Equation 3.29, Equa-
tion 3.34 and Equation 3.38, we can find the helicity amplitude for the defined polarizations:

F̃eR
1
2

1
2

= χ
†
2 (↑)

(
6

∑
k=1

Fk Σk

)
χ1(↑)

= −
√

2
[

sin
θ

2
(F1 +F2)+

1
2

sinθ cos
θ

2
(F3 +F4)

]
. (3.39)

Similarly for eL we can also calculate F̃eL
1
2

1
2
:

eL =
1√
2

(
1 −i 0

)
k̂.eL = 0, σσσ .(k̂× eL) =

(
0 0√
2i 0

)
, (3.40)

Σ1 = σσσ .eL −σ3(ẑ.eL) =−
√

2

(
0 0
1 0

)

Σ2 = −i(σσσ .q̂)σσσ .(ẑ× eL) =
√

2

(
sinθe−iφ 0
−cosθ 0

)

Σ3 = σ3(
1√
2

sinθ(cosφ − isinφ) =
1√
2

sinθe−iφ

(
1 0
0 −1

)

Σ4 =
1√
2

sinθe−iφ

(
cosθ sinθe−iφ

sinθeiφ −cosθ

)
(3.41)
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and Σ5 = Σ6 = 0. Therefore:

6

∑
k=1

Fk Σk = F1Σ1 +F2Σ2 +F3Σ3 +F4Σ4

=
1√
2

(
(2F2 +F3 +F4 cosθ)sinθe−iφ F4 sin2

θe−2iφ

2F1 −2cosθF2 + sin2
θF4 −(F3 + cosθF4)sinθe−iφ

)
.

(3.42)

and

F̃eL
1
2

1
2

= χ
†
2 (↑)

(
6

∑
k=1

Fk Σk

)
χ1(↑) =

1√
2

sinθ cos
θ

2
(F3 +F4)e−2iφ . (3.43)

Equation 3.39 and all helicity amplitudes for transverse polarization (F̃
(eL(R))

λ2,λ1
and G̃

(eL(R))

λ2,λ1
) are

the same (with [9]) when you neglect lepton mass (ml = 0), but it is not the case for F̃(e±)
λ2,λ1

and G̃(e±)
λ2,λ1

. To show this we also calculate F̃e−
1
2

1
2
. For e−:

e− =
ε3

L
C−

(
0 0 1

)
, e0

− =
ε0

L
C−

k̂.e =
ε3

L
C−

, σσσ .e = σ3
ε3

L
C−

. (3.44)

Σ1 = Σ2 = Σ3 = Σ4 = 0 in this case and

Σ5 = σ3

(
k0ε3

L
C−

−|k| ε0
L

C−

)
=

1
C−

(
k0ε

3
L −|k|ε0

L
)(1 0

0 −1

)

Σ6 =
1

C−

(
k0ε

3
L −|k|ε0

L
)( cosθ sinθe−iφ

sinθeiφ −cosθ

)
. (3.45)

Therefore:

6

∑
k=1

Fk Σk =
1

C−

(
k0ε

3
L −|k|ε0

L
)
=

(
F5 +F6 cosθ F6 sinθe−iφ

F6 sinθeiφ −(F5 +F6 cosθ)

)
.

(3.46)
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Knowing nucleon’s spinors χ1 = χ2 = |↑⟩ from Appendix B, and from Eqs. 3.29, we can
find the helicity amplitude for the defined polarizations:

F̃e−
1
2

1
2

= χ
†
2 (↑)

(
6

∑
k=1

Fk Σk

)
χ1(↑)

=
k0ε3

L −|k|ε0
L√

|(ε0
L)

2 − (ε3
L)

2|
[F5 +F6]cos

θ

2
e−iφ . (3.47)

if ml → 0 then ε0
L → |k|, ε3

L → k0, and C− →
√
−k2 and Equation 3.47 becomes

F̃e−
1
2

1
2
(ml → 0) =−

√
−k2 [F5 +F6]cos

θ

2
e−iφ , (3.48)

as it is defined in [9].
For each vector and axial currents we can define 2×2×4 = 16 helicity amplitudes F̃(λk)

λ2,λ1
,

and G̃(λk)
λ2,λ1

. The final result for all helicity amplitudes are summarized in Equation 3.49 -
3.56.

F̃eL
1
2

1
2

=
1√
2

e−2iφ sinθ cos
θ

2
(F3 +F4)

F̃eL
−1
2

1
2

= − 1√
2

e−iφ sinθ sin
θ

2
(F3 −F4)

F̃eL
1
2
−1
2

=
√

2e−iφ [cos
θ

2
(F1 −F2)−

1
2

sinθ sin
θ

2
(F3 −F4)

]
F̃eL

−1
2

−1
2

= −
√

2
[

sin
θ

2
(F1 +F2)+

1
2

sinθ cos
θ

2
(F3 +F4)

]
(3.49)

F̃eR
1
2

1
2

= −
√

2
[

sinθ/2(F1 +F2)+
1
2

sinθ cos
θ

2
(F3 +F4)

]
F̃eR

−1
2

1
2

= −
√

2eiφ [cosθ/2(F1 −F2)−
1
2

sinθ sin
θ

2
(F3 −F4)

]
F̃eR

1
2− 1

2
=

1√
2

eiφ sinθ sin
θ

2
(F3 −F4)

F̃eR
− 1

2− 1
2

=
1√
2

e2iφ sinθ cos
θ

2
(F3 +F4) (3.50)
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F̃e−
1
2

1
2

= e−iφ cos
θ

2
1

C−
(k0ε

0
L −|k|ε3

L)(F5 +F6)

F̃e−
− 1

2
1
2

= −sin
θ

2
1

C−
(k0ε

0
L −|k|ε3

L)(F5 −F6)

F̃e−
1
2− 1

2
= −sin

θ

2
1

C−
(k0ε

0
L −|k|ε3

L)(F5 −F6)

F̃e−
− 1

2− 1
2

= −eiφ cos
θ

2
1

C−
(k0ε

0
L −|k|ε3

L)(F5 +F6) (3.51)

F̃e+
1
2

1
2

= e−iφ cos
θ

2
1

C+
(k0ε

0
R −|k|ε3

R)(F5 +F6)

F̃e+
− 1

2
1
2

= −sin
θ

2
1

C+
(k0ε

0
R −|k|ε3

R)(F5 −F6)

F̃e+
1
2− 1

2
= −sin

θ

2
1

C+
(k0ε

0
R −|k|ε3

R)(F5 −F6)

F̃e+
− 1

2− 1
2

= −eiφ cos
θ

2
1

C+
(k0ε

0
R −|k|ε3

R)(F5 +F6) (3.52)

G̃eL
1
2

1
2

=
1√
2

e−2iφ sinθ cos
θ

2
(G3 +G4)

G̃eL
−1
2

1
2

=
1√
2

e−iφ sinθ sin
θ

2
(G3 −G4)

G̃eL
1
2
−1
2

=
√

2eiφ [cos
θ

2
(G1 −G2)−

1
2

sinθ sin
θ

2
(G3 −G4)

]
G̃eL

−1
2

−1
2

=
√

2
[

sin
θ

2
(G1 +G2)+

1
2

sinθ cos
θ

2
(G3 +G4)

]
(3.53)

G̃eR
1
2

1
2

= −
√

2
[

sinθ/2(G1 +G2)+
1
2

sinθ cos
θ

2
(G3 +G4)

]
G̃eR
− 1

2
1
2

=
√

2eiφ [cosθ/2(G1 −G2)−
1
2

sinθ sin
θ

2
(G3 −G4)

]
G̃eR

1
2− 1

2
=

1√
2

eiφ sinθ sin
θ

2
(G3 −G4)

G̃eR
− 1

2− 1
2

= − 1√
2

e2iφ sinθ cos
θ

2
(G3 +G4) (3.54)
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G̃e−
1
2

1
2

= e−iφ cos
θ

2
1

C−k0

[
|k|ε3

L(G5 +G6)+(k0ε
0
L −|k|ε3

L)(G7 +G8)
]

G̃e−
− 1

2
1
2

= sin
θ

2
1

C−k0

[
|k|ε3

L(G5 −G6)+(k0ε
0
L −|k|ε3

L)(G7 −G8)
]

G̃e−
1
2− 1

2
= −sin

θ

2
1

C−k0

[
|k|ε3

L(G5 −G6)+(k0ε
0
L −|k|ε3

L)(G7 −G8)
]

G̃e−
− 1

2− 1
2

= eiφ cos
θ

2
1

C−k0

[
|k|ε3

L(G5 +G6)+(k0ε
0
L −|k|ε3

L)(G7 +G8)
]

(3.55)

G̃e+
1
2

1
2

= e−iφ cos
θ

2
1

C+k0

[
|k|ε3

R(G5 +G6)+(k0ε
0
R −|k|ε3

R)(G7 +G8)
]

G̃e+
− 1

2
1
2

= sin
θ

2
1

C+k0

[
|k|ε3

R(G5 −G6)+(k0ε
0
R −|k|ε3

R)(G7 −G8)
]

G̃e+
1
2− 1

2
= −sin

θ

2
1

C+k0

[
|k|ε3

R(G5 −G6)+(k0ε
0
R −|k|ε3

R)(G7 −G8)
]

G̃e+
− 1

2− 1
2

= eiφ cos
θ

2
1

C+k0

[
|k|ε3

R(G5 +G6)+(k0ε
0
R −|k|ε3

R)(G7 +G8)
]

(3.56)

3.2 Cross Section

A detailed derivation of the cross-section for single pion production can be found in Appendix
E. The final result is a differential cross-section as a function of E, Q2, W, θ and φ :

dσ(νN → lNπ)

dQ2dWdΩπ

=
1

(2π)4
1

(4MEν)2
|q|
4

|M |2, (3.57)

where M is the transition amplitude and it has been given in Equation 3.6 and Equation 3.8.
For unpolarized spinors:

|M |2 = G2
F

2
cos2

θC
1
2 ∑

spin

{
[ε

β

L ⟨ Nπ| Jβ |N ⟩]∗[εα
L ⟨ Nπ| Jα |N ⟩]

+[ε
β

R ⟨ Nπ| Jβ |N ⟩]∗[εα
R ⟨ Nπ| Jα |N ⟩]

}
. (3.58)

In both [7] and [9] the lepton current is multiplied by a factor and the cross-section (Equa-
tion 3.57) is divided by same factor:

ε
α →− 1√

2
1√
−k2

|kL|
2Eν

ε
α . (3.59)
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Therefore the differential cross section formula for single pion production can be found by
using Equation 3.33- 3.34, and from Equation 3.57- 3.59 we have:

dσ(νN → lNπ)

dk2dWdΩπ

=
G2

F
2

1
(2π)4

|q|
4

−k2

(kL)2 ∑
λ2,λ1

{
∣∣∣CL−(F̃

eL
λ2λ1

(θ ,φ)− G̃eL
λ2λ1

(θ ,φ))+CR−(F̃
eR
λ2λ1

(θ ,φ)− G̃eR
λ2λ1

(θ ,φ))+C−(F̃
e−
λ2λ1

(θ ,φ)− G̃e−
λ2λ1

(θ ,φ))
∣∣∣2

+
∣∣∣CL+(F̃

eL
λ2λ1

(θ ,φ)− G̃eL
λ2λ1

(θ ,φ))+CR+(F̃
eR
λ2λ1

(θ ,φ)− G̃eR
λ2λ1

(θ ,φ))+C+(F̃
e+
λ2λ1

(θ ,φ)− G̃e+
λ2λ1

(θ ,φ))
∣∣∣2}.

(3.60)

For anti-neutrino interactions, one needs to swap CL± with CR± . We can expand Equa-
tion 3.60:

dσ(νN → lNπ)

dk2dWdΩπ

=
G2

F
2

1
(2π)4

|q|
4

−k2

(kL)2 ∑
λ2,λ1

{
|CL|2|F̃eL

λ2λ1
(θ ,φ)− G̃eL

λ2λ1
(θ ,φ)|2 + |CR|2|F̃eR

λ2λ1
(θ ,φ)− G̃eR

λ2λ1
(θ ,φ)|2

+ |C−|2 |F̃e−
λ2λ1

(θ ,φ)− G̃e−
λ2λ1

(θ ,φ)|2 + |C+|2 |F̃e+
λ2λ1

(θ ,φ)− G̃e+
λ2λ1

(θ ,φ)|2

+C∗
L−C− (F̃eL

λ2λ1
(θ ,φ)− G̃eL

λ2λ1
(θ ,φ))∗(F̃e−

λ2λ1
(θ ,φ)− G̃e−

λ2λ1
(θ ,φ))+ c.c.

+C∗
R−C− (F̃eR

λ2λ1
(θ ,φ)− G̃eR

λ2λ1
(θ ,φ))∗(F̃e−

λ2λ1
(θ ,φ)− G̃e−

λ2λ1
(θ ,φ))+ c.c.

+C∗
L+

C− (F̃eL
λ2λ1

(θ ,φ)− G̃eL
λ2λ1

(θ ,φ))∗(F̃e−
λ2λ1

(θ ,φ)− G̃e−
λ2λ1

(θ ,φ))+ c.c.

+C∗
R+

C− (F̃eR
λ2λ1

(θ ,φ)− G̃eR
λ2λ1

(θ ,φ))∗(F̃e−
λ2λ1

(θ ,φ)− G̃e−
λ2λ1

(θ ,φ))+ c.c.

+(C∗
L−CR− +C∗

L+
CR+)(F̃

eL
λ2λ1

(θ ,φ)− G̃eL
λ2λ1

(θ ,φ))∗(F̃eR
λ2λ1

(θ ,φ)− G̃eR
λ2λ1

(θ ,φ))+ c.c.
}

(3.61)

where

|CL|2 = |CL−|2 + |CL+|2 , |CR|2 = |CR−|2 + |CR+|2, (3.62)

and c.c. is complex-conjugate.
The helicity amplitudes in Equation 3.49- 3.56 have a very simple dependance to the φ angle,
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i.e. a phase. Therefore we can separate the φ dependence of helicity amplitudes by using:

(F̃eL
λ2λ1

(θ ,φ)− G̃eL
λ2λ1

(θ ,φ))∗(F̃eR
λ2λ1

(θ ,φ)− G̃eR
λ2λ1

(θ ,φ)) =

e2iφ (F̃eL
λ2λ1

(θ)− G̃eL
λ2λ1

(θ))∗(F̃eR
λ2λ1

(θ)− G̃eR
λ2λ1

(θ))

(F̃eL
λ2λ1

(θ ,φ)− G̃eL
λ2λ1

(θ ,φ))∗(F̃e±
λ2λ1

(θ ,φ)− G̃e±
λ2λ1

(θ ,φ)) =

eiφ (F̃eL
λ2λ1

(θ)− G̃eL
λ2λ1

(θ))∗(F̃e±
λ2λ1

(θ)− G̃e±
λ2λ1

(θ))

(F̃eR
λ2λ1

(θ ,φ)− G̃eR
λ2λ1

(θ ,φ))∗(F̃e±
λ2λ1

(θ ,φ)− G̃e±
λ2λ1

(θ ,φ)) =

e−iφ (F̃eR
λ2λ1

(θ)− G̃eR
λ2λ1

(θ))∗(F̃e±
λ2λ1

(θ)− G̃e±
λ2λ1

(θ)) (3.63)

Therefore Equation 3.61 will be

dσ(νN → lNπ)

dk2dWdΩπ

=
G2

F
2

1
(2π)4

|q|
4

−k2

(kL)2 ∑
λ2,λ1

{
|CL|2|F̃eL

λ2λ1
(θ)− G̃eL

λ2λ1
(θ)|2 + |CR|2|F̃eR

λ2λ1
(θ)− G̃eR

λ2λ1
(θ)|2

+ |C−|2 |F̃e−
λ2λ1

(θ)− G̃e−
λ2λ1

(θ)|2 + |C+|2 |F̃e+
λ2λ1

(θ)− G̃e+
λ2λ1

(θ)|2

+2cosφ

{
CL−C− Re

[
(F̃eL

λ2λ1
(θ)− G̃eL

λ2λ1
(θ))∗(F̃e−

λ2λ1
(θ)− G̃e−

λ2λ1
(θ))

]
+ CR−C− Re

[
(F̃eR

λ2λ1
(θ)− G̃eR

λ2λ1
(θ))∗(F̃e−

λ2λ1
(θ)− G̃e−

λ2λ1
(θ))

]
+ CL+C+ Re

[
(F̃eL

λ2λ1
(θ)− G̃eL

λ2λ1
(θ))∗(F̃e+

λ2λ1
(θ)− G̃e+

λ2λ1
(θ))

]
+ CR+C+ Re

[
(F̃eR

λ2λ1
(θ)− G̃eR

λ2λ1
(θ))∗(F̃e+

λ2λ1
(θ)− G̃e+

λ2λ1
(θ))

]}
+2sinφ

{
− CL−C− Im

[
(F̃eL

λ2λ1
(θ)− G̃eL

λ2λ1
(θ))∗(F̃e−

λ2λ1
(θ)− G̃e−

λ2λ1
(θ))

]
+ CR−C− Im

[
(F̃eR

λ2λ1
(θ)− G̃eR

λ2λ1
(θ))∗(F̃e−

λ2λ1
(θ)− G̃e−

λ2λ1
(θ))

]
− CL+C+ Im

[
(F̃eL

λ2λ1
(θ)− G̃eL

λ2λ1
(θ))∗(F̃e+

λ2λ1
(θ)− G̃e+

λ2λ1
(θ))

]
+ CR+C+ Im

[
(F̃eR

λ2λ1
(θ)− G̃eR

λ2λ1
(θ))∗(F̃e+

λ2λ1
(θ)− G̃e+

λ2λ1
(θ))

]}
+2cos2φ(C∗

L−CR− + C∗
L+

CR+)Re
[
(F̃eL

λ2λ1
(θ)− G̃eL

λ2λ1
(θ))∗(F̃eR

λ2λ1
(θ)− G̃eR

λ2λ1
(θ))

]
−2sin2φ(C∗

L−CR− + C∗
L+

CR+) Im
[
(F̃eL

λ2λ1
(θ)− G̃eL

λ2λ1
(θ))∗(F̃eR

λ2λ1
(θ)− G̃eR

λ2λ1
(θ))

]}
(3.64)
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3.2.1 Alternative Cross Section in terms of angular momentum

Differential cross-section in Equation 3.60 is a function of pion angles, θ and φ . It can
be alternatively defined in terms of angular momentums, j. This is an important step to
understand how to add the two different interactions coherently. In resonant interaction, pion
produces indirectly via an intermediate resonance with definite angular momentum while in
the nonresonant interaction a pion is produced directly.
In this section we will derive an alternative cross-section in terms of angular momenta, but
first we need to have a standard form of helicity amplitudes to be eligible to do a multipole
expansion. An equivalent set of standard helicity amplitudes can be defined with two indices
µ and λ [15]:

Fµλ (θ ,φ), Gµλ (θ ,φ) (3.65)

where

λ = λk −λ1, λ =−3
2 ,−1

2 ,
1
2 ,

3
2

µ = λq −λ2 =−λ2, µ =−1
2 ,

1
2 . (3.66)

λk is the polarization of the gauge bosons; λk(eL) =−1, λk(eR) = +1 and λk(e±) = 0. λq is
helicity of pion which is zero for a scalar particle.
Standard helicity amplitudes (Equation 3.65) are related with helicity amplitudes defined in
subsection 3.1.3 and Equation 3.60:

Fµλ (θ ,φ) = ei[λ1π+λ2(π+2φ)]F̃λk
λ2,λ1

(θ ,φ),

Gµλ (θ ,φ) = ei[λ1π+λ2(π+2φ)]G̃λk
λ2,λ1

(θ ,φ). (3.67)

The detailed derivation can be found in Appendix F, and the explicit expression is given in
Table 3.3.

Multipole Expansion

Helicity amplitudes are invariant under ordinary rotation, therefore it is always possible to
expand them over angular momentums (Appendix F) [15]. First step is to define the initial
(final) state in the positive direction. In the isobaric frame two initial (final) particles are back
to back, then we simply need to reflect the initial (final) nucleon in the positive direction i.e.
λ1(λ2)→−λ1(λ2) according to F, F.1 and F.2.
Now we show the standard helicity amplitudes (Equation 3.67) in the form of bra-ket from
Appendix F. In the isobaric frame, the initial state, along ẑ, is |0,0; λk −λ1⟩ = |0,0; λ ⟩,
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Table 3.3 Standard Helicity Amplitudes
Fµλ (θ ,φ), Gµλ (θ ,φ)

Vector Axial vector

F1
2

1
2
= e−iφ F̃eR

− 1
2

1
2

F1
2

3
2
=−e−iφ F̃eR

− 1
2− 1

2

F− 1
2

1
2
=−eiφ F̃eR

1
2

1
2

F− 1
2

3
2
= eiφ F̃eR

1
2− 1

2

G 1
2

1
2
= e−iφ G̃eR

− 1
2

1
2

G 1
2

3
2
=−e−iφ G̃eR

− 1
2− 1

2

G− 1
2

1
2
=−eiφ G̃eR

1
2

1
2

G− 1
2

3
2
= eiφ G̃eR

1
2− 1

2

F1
2− 3

2
= e−iφ F̃eL

− 1
2

1
2

F1
2− 1

2
=−e−iφ F̃eL

− 1
2− 1

2

F− 1
2− 3

2
=−eiφ F̃eL

1
2

1
2

F− 1
2− 1

2
= eiφ F̃eL

1
2− 1

2

G 1
2− 3

2
= e−iφ G̃eL

− 1
2

1
2

G 1
2− 1

2
=−e−iφ G̃eL

− 1
2− 1

2

G− 1
2− 3

2
=−eiφ G̃eL

1
2

1
2

G− 1
2− 1

2
= eiφ G̃eL

1
2− 1

2

F(±)0
1
2

1
2

=−e−iφ F̃e±
− 1

2− 1
2

F(±)0
1
2− 1

2
= e−iφ F̃e±

− 1
2

1
2

F(±)0
− 1

2− 1
2
=−eiφ F̃e±

1
2

1
2

F(±)0
− 1

2
1
2

= eiφ F̃e±
1
2− 1

2

G(±)0
1
2

1
2

=−e−iφ G̃e±
− 1

2− 1
2

G(±)0
1
2− 1

2
= e−iφ G̃e±

− 1
2

1
2

G(±)0
− 1

2− 1
2
=−eiφ G̃e±

1
2

1
2

G(±)0
− 1

2
1
2
= eiφ G̃e±

1
2− 1

2

and the final state along (θ ,φ ) is |θ ,φ ;λq −λ2⟩= |θ ,φ ; µ⟩. In fact we reduce the number of
indices to two λ and µ . Therefore:

Fµλ (θ ,φ) = ⟨θ ,φ ; µ|F |0,0;λ ⟩ (3.68)

Gµλ (θ ,φ) = ⟨θ ,φ ; µ|G|0,0;λ ⟩ (3.69)

where F and G should be invariant under rotation and reflection. From now on we only
take into the vector part, however, derivation and all steps are the same for axial helicity
amplitudes. Applying section F.3) in Equation 3.68

Fµλ (θ ,φ) = ∑
jm

∑
j′m′

⟨θ ,φ ; µ| j,m; µ⟩⟨ j,m; µ|F | j′,m′;λ ⟩⟨ j′,m′;λ |0,0;λ ⟩

= ∑
jm

√
2 j+1

4π
D j∗

m,µ(φ ,θ ,−φ)⟨µ|F j|λ ⟩
√

2 j+1
4π

δmλ (3.70)
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Table 3.4 d j
λ ,µ for j = l + 1

2

d j
1
2

1
2
= (l +1)−1 cos

θ

2
(P′

l+1 −P′
l )

d j
− 1

2
1
2
= (l +1)−1 sin

θ

2
(P′

l+1 +P′
l )

d j
1
2

3
2
= (l +1)−1 sin

θ

2
(

√
l

l +2
P′

l+1 +

√
l +2

l
P′

l )

d j
− 1

2
3
2
= (l +1)−1 cos

θ

2
(−
√

l
l +2

P′
l+1 +

√
l +2

l
P′

l )

Pl are Legendre polynomials and P′
l = dPl/d cosθ

where µ = λq −λ2 =−λ2 and λ = λk −λ1. The following relation (given in [15]):

⟨θ ,φ ; µ| j,m; µ
′⟩=

√
2J+1

4π
δµµ ′DJ∗

m,µ(φ ,θ ,−φ)

⟨0,0; µ| j,m; µ
′⟩=

√
2J+1

4π
δµµ ′δm,µ

⟨ j′m′;λ
′| jm;λ ⟩= δ j j′δmm′δλλ ′ (3.71)

has been used in Equation 3.70, where

DJ
m,µ

∗
(φ ,θ ,−φ) = e−iµφ dJ

m,µ(θ) eimφ (3.72)

As it is explained in Appendix F. ⟨µ|F j|λ ⟩ are the helicity amplitudes for definite angular
momentum j, i.e. F j

µλ
. Therefore:

Fµλ (θ ,φ) = ∑
j

F j
µλ

(2 j+1)d j
λ µ

(θ)ei(λ−µ)φ

Gµλ (θ ,φ) = ∑
j

G j
µλ

(2 j+1)d j
λ µ

(θ)ei(λ−µ)φ . (3.73)

Similarly the multipole expansion for F(±)0
µλ

and G(±)0
µλ

can be defined where
√

2 j+1
4π

d j
λ ,µ(θ)e

i(λ−µ)φ

are mutually orthonormal functions, and d j
λ ,µ are real and given in [15], [78] and also in

Table 3.4.∫
π

0
d j

λ ,µ(θ)d
j′

λ ,µ(θ)d cosθ =
2

2 j+1
δ j j′

∑
j

2 j+1
2

d j
λ ,µ(θ)d

j
λ ,µ(θ

′) = δ (cosθ − cosθ
′) (3.74)
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The expansion coefficients F j
µλ

and G j
µλ

can be found by integrating over d j
µλ

(θ)e−i(λ−µ)φ dΩ

F j
µλ

=
1

4π

∫
Fµλ (θ ,φ)d

j
λ µ

(θ)e−i(λ−µ)φ dΩ

G j
µλ

=
1

4π

∫
Gµλ (θ ,φ)d

j
λ µ

(θ)e−i(λ−µ)φ dΩ, (3.75)

and similarly for F0 j
µλ

and G0 j
µλ

, when λk = 0.
The expansion coefficients refer to πN states of definite angular momentum, but not of
definite parity. Parity eigenstates refer to l orbital angular momentum. Therefore we can
define eigenstates with definite angular momentum and parity by adding and subtracting
eigenstate with same j and different helicity of outgoing nucleon (µ = −λ2), i.e. we set
j = l + 1

2 :

AV
l+ = − 1√

2

(
F j

1
2

1
2
+F j

− 1
2

1
2

)
AV

l+1− = 1√
2

(
F j

1
2

1
2
−F j

− 1
2

1
2

) AA
l+ = − 1√

2

(
G j

1
2

1
2
+G j

− 1
2

1
2

)
AA

l+1− = 1√
2

(
G j

1
2

1
2
−G j

− 1
2

1
2

)

BV
l+ =

√
2

l(l+2)

(
F j

1
2

3
2
+F j

− 1
2

3
2

)
BV

l+1− = −
√

1
l(l+2)

(
F j

1
2

3
2
−F j

− 1
2

3
2

) BA
l+ =

√
2

l(l+2)

(
G j

1
2

3
2
+G j

− 1
2

3
2

)
BA

l+1− = −
√

2
l(l+2)

(
G j

1
2

3
2
−G j

− 1
2

3
2

)

S(±)V
l+ = 1√

2

√
−k2

|k|

(
F(±)0 j

1
2

1
2

+F(±)0 j
− 1

2
1
2

)
S(±)V

l+1− = 1√
2

√
−k2

|k|

(
F(±)0 j

1
2

1
2

−F(±)0 j
− 1

2
1
2

)
S(±)A

l+ = 1√
2

√
−k2

|k|

(
G(±)0 j

1
2

1
2

+G(±)0 j
− 1

2
1
2

)
S(±)A

l+1− = 1√
2

√
−k2

|k|

(
G(±)0 j

1
2

1
2

−G(±)0 j
− 1

2
1
2

)
,

(3.76)

where the index l is the orbital angular momentum of the final pion-nucleon system and
subscript ± in l+ and (l +1)− identifies the total angular momentum j as j = l ±1/2.
Now we are ready to make integration from Equation 3.64 by knowing that all terms related
to φ angle are going to be zero after integration. Here we only show the detailed derivation
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of the first term:∫
dΩ ∑

λ1λ2

|CL|2|F̃eL
λ2λ1

− G̃eL
λ2λ1

|2

=|CL|2
∫

dΩ
{
|F̃eL

1
2

1
2
− G̃eL

1
2

1
2
|2 + |F̃eL

− 1
2

1
2
− G̃eL

− 1
2

1
2
|2 + |F̃eL

1
2− 1

2
− G̃eL

1
2− 1

2
|2 + |F̃eL

− 1
2− 1

2
− G̃eL

− 1
2− 1

2
|2
}

(3.77)

=|CL|2
∫

dΩ

{
|−F1

2
3
2
−G 1

2
3
2
|2 + |−F− 1

2
3
2
−G− 1

2
3
2
|2 + |−F1

2
1
2
−G 1

2
1
2
|2 + |−F− 1

2
1
2
−G 1

2− 1
2
|2
}

(3.78)

=|CL|2
∫

dΩ∑
j
(2 j+1)2

{
|(−F j

1
2

3
2
−G j

1
2

3
2
)d j

3
2

1
2
(θ)|2 + |(−F j

− 1
2

3
2
−G j

− 1
2

3
2
)d j

3
2− 1

2
(θ)|2

+ |(−F j
1
2

1
2
−G j

1
2

1
2
)d j

1
2

1
2
(θ)|2 + |(−F j

− 1
2

1
2
−G j

1
2− 1

2
)d j

1
2− 1

2
(θ)|2

}
(3.79)

=|CL|24π(2 j+1)∑
j

{
|F j

1
2

3
2
+G j

1
2

3
2
|2 + |F j

− 1
2

3
2
+G j

− 1
2

3
2
|2 + |F j

1
2

1
2
+G j

1
2

1
2
|2 + |F j

− 1
2

1
2
+G j

1
2− 1

2
|2
}

(3.80)

where from Equation 3.77 to Equation 3.78 we used Equation 3.67 and from Equation 3.78
to Equation 3.79 we used Equation 3.73. From Equation 3.79 to Equation 3.80 we use
Equation 3.74. Using Equation 3.76, we will have:

=|CL|2 ∑
l

8π(l +1)
{1

2
[
|(AV

l+−AV
l+1−)+(AA

l+−AA
l+1−)|2 + |(AV

l++AV
l+1−)+(AA

l++AA
l+1−)|2

]
+

l(l +2)
8

[
|(BV

l+−BV
l+1−)+(BA

l+−BA
l+1−)|2 + |(BV

l++BV
l+1−)+(BA

l++BA
l+1−)|2

]}
=|CL|2 ∑

l
8π(l +1)

{
|AV

l++AA
l+|2 + |AV

l+1−+AA
l+1−|2 +

l(l +2)
4

[
|BV

l++BA
l+|2 + |BV

l+1−+BA
l+1−|2

]}
.

(3.81)
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We can do the same calculation for other terms, but here we show the final cross section in
terms of angular momentum instead of pion angles (compare with Equation 3.64).

dσ(νN → lNπ)

dk2dW
=

G2
F

2
1

(2π)3 |q|
−k2

(kL)2 ∑
l
(l +1)

{
|CL|2

[
|AV

l++AA
l+|2 + |AV

l+1−+AA
l+1−|2 +

l(l +2)
4

[
|(BV

l++BA
l+|2 + |BV

l+1−+BA
l+1−)|2

]]
+|CR|2

[
|AV

l+−AA
l+|2 + |AV

l+1−−AA
l+1−|2 +

l(l +2)
4

[
|(BV

l+−BA
l+|2 + |BV

l+1−−BA
l+1−)|2

]]
+|C−|2

|k|2
(−k2)

[
|S(−)V

l+ +S(−)A
l+ |2 + |S(−)V

l+1−+S(−)A
l+1−|2 + |S(−)V

l+ −S(−)A
l+ |2 + |S(−)V

l+1−−S(−)A
l+1−|2

]
+|C+|2

|k|2
(−k2)

[
|S(+)V

l+ +S(+)A
l+ |2 + |S(+)V

l+1−+S(+)A
l+1−|2 + |S(+)V

l+ −S(+)A
l+ |2 + |S(+)V

l+1−−S(+)A
l+1−|2

]}
(3.82)





Chapter 4

Resonance Contributions and
Nonresonant Background

In this chapter, a detailed calculation of helicity amplitudes for both resonant (section 4.1)
and nonresonant (section 4.2) interactions will be given. Applying both contributions in
Equation 3.60 will provide the single pion production cross-section.

4.1 Single Pion Production via Resonance decay

Rein and Sehgal (RS) model [7] describes single pion that is produced in neutrino-nucleon
interaction via resonance decay. This model is based on helicity amplitudes derived in a
relativistic quark model [5]. The helicity amplitudes depend on the spin projection of the
initial and final particles. The quark model had been extended to neutrino interactions by
Ravndal [6], and later the RS model includes resonances up to MR < 2GeV , as they are given
in Table 4.1 where first column identifies resonances with their quantum numbers (l, I, j), for
instance ∆ resonance or P33(1232) is identified with l = 1, I = 3/2, and j = 3/2. The second
and third columns identify the Breit-Wigner mass and the width of resonances.
The original paper [7] ignored the lepton mass while there are several papers [12–14] that
include the lepton mass for the RS-model.
Resonance excitation is like a two particles interaction; ν(k1)N(p1)→ l(k2)H(pR). The

general form of cross-section with N outgoing particles is given in Appendix E, where for
on-shell nucleons the δ function can be integrated out. On the other hand for broad states
like resonances in the final state, it can be replaced by a spectral function of the particle. In
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the resonance rest frame (p2
R =W 2) we have:

δ (p2
R −M2

R) =
1

2MR
δ (W −MR)

=
1

2MR

1
π

lim
ε→0

ε

W 2 + ε2 . (4.1)

In the case of broad resonance state, ε → ΓR/2, therefore:

δ (p2
R −M2

R)→ A (pR) =
1

2MR

1
π

ΓR/2
(W −MR)2 +Γ2

R/4
(4.2)

with

ΓR = Γ0(|q(W )|/|q(MR)|)2l+1, (4.3)

where Γ0 and MR are given in Table 4.1, and l is orbital angular momentum quantum number
of individual resonance.
With the help of Appendix E, we can have

dσ(νN → lN)

dQ2dW
=

1
2π

1
(4MEν)2 W

1
2MR

δ (p2
R −M2

R)|M |2, (4.4)

M is similar to what was presented on Equation 3.58, but in RS model [7], different notation
is used for hadronic current operator:

Jα = JV
α − JA

α = 2MRFα (4.5)

From Equation 3.6 and similar to Equation 3.33:

ε
α

λ
⟨ R| Jα |N ⟩= 2MR⟨ R| CLλ

eα
L Fα +CRλ

eα
R Fα +Cλ eα

λ
Fα |N ⟩

= 2MR⟨ R| CLλ
F−+CRλ

F++Cλ F(λ )
0 |N ⟩ (4.6)

where λ = −(+) stands for left(right) handed helicity, and F− = 1√
2
(Fx − iFy) and F+ =

− 1√
2
(Fx + iFy).

It is important to notice that the definitions of the RS-model [7] is a little bit different than
our definitions when we defined the general framework in chapter 3, therefore first we should
adapt the RS-model to our definitions. For instant production amplitudes in the RS-model
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[7] are given in terms of sz:

f±|2sz| = ⟨N,sz ±1|F±|R,sz⟩

f0± = ⟨N,sz =±1
2
|F0|R,sz =±1

2
⟩, (4.7)

while we need to rewrite them in terms of helicity in the isobaric frame by knowing the
direction of particle’s momenta; λ1 =−s1z, λ2 =−s2z and λR = sRz . Therefore1:

⟨ R,λR = a|eα
L Fα |N1,λ1 =−(a+1) ⟩=⟨ R,λR = a|F−|N1,λ1 =−(a+1) ⟩

=⟨ N1,λ1 =−(a+1)|F†
−|R,λR = a ⟩∗

=⟨ N1,λ1 =−(a+1)|−F+|R,λR = a ⟩∗

=−⟨ N1,s1z = a+1|F+|R,sRz = a ⟩∗ =− f ∗+|2a| =− f+|2a|

⟨ R,λR = a|eα
R Fα |N1,λ1 =−(a−1) ⟩=⟨ R,λR = a|F+|N1,λ1 =−(a−1) ⟩

=⟨ N1,λ1 =−(a−1)|F†
+|R,λR = a ⟩∗

=⟨ N1,λ1 =−(a−1)|−F−|R,λR = a ⟩∗

=−⟨ N1,s1z = a−1|F−|R,sRz = a ⟩∗ =− f ∗−|2a| =− f−|2a|

⟨ R,λR =±1
2
|eα
−Fα |N1,λ1 =∓1

2
⟩= |k|√

−k2
⟨ R,λR =±1

2
|F(−)

0 |N1,λ1 =∓1
2
⟩

=
|k|√
−k2

⟨ N1,λ1 =∓1
2
|F(−)

0
†
|R,λR =±1

2
⟩∗

=
|k|√
−k2

⟨ N1,s1z =±1
2
|F(−)

0 |R,sRz =±1
2
⟩∗

=
|k|√
−k2

f (−)
0±

∗
=

|k|√
−k2

f (−)
0±

⟨ R,λR =±1
2
|eα
+Fα |N1,λ1 =∓1

2
⟩= |k|√

−k2
⟨ R,λR =±1

2
|F(+)

0 |N1,λ1 =∓1
2
⟩

=
|k|√
−k2

⟨ N1,λ1 =∓1
2
|F(+)

0
†
|R,λR =±1

2
⟩∗

=
|k|√
−k2

⟨ N1,s1z =±1
2
|F(+)

0 |R,sRz =±1
2
⟩∗

=
|k|√
−k2

f (+)
0±

∗
=

|k|√
−k2

f (+)
0±

(4.8)

1This is given in Rein paper [9]
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Production amplitudes ( f±1
±3
(R) and f (±)

0± (R)) depend on different helicities of nucleons and

gauge boson. They are given in [7] for massless lepton, but later they are calculated for
massive lepton in [13, 14] and you can also find them in Appendix G for all resonances.
Applying Equation 4.2 - 4.8, Equation 3.58 and Equation 3.59 into Equation 4.4 one can find
the RS cross-section:

dσ(νN → lR → lNπ)

dQ2dW
=

G2
F

2
cos2

θc
1

(2π)3
(−k2)

k2
L

W 2

M2
πΓRχE

(W −MR)2 +Γ2
R/4

|CI
Nπ |2

{
|CL−|2

(
| fCC
+1 |2 + | fCC

+3 |2
)
+ |CR−|2

(
| fCC
−1 |2 + | fCC

−3 |2
)
+ |C−|2

(
| f (−)CC

0+ |2 + | f (−)CC
0− |2

)
+|CL+|2

(
| fCC
+1 |2 + | fCC

+3 |2
)
+ |CR+|2

(
| fCC
−1 |2 + | fCC

−3 |2
)
+ |C+|2

(
| f (+)CC

0+ |2 + | f (+)CC
0− |2

)}
(4.9)

where it is multiplied to χE ; branching ratio for decay of individual resonance to Nπ

(Table 4.1).
Using Equation 3.62 we will obtain:

dσ(νN → lR → lNπ)

dQ2dW
=

G2
F

2
cos2

θc
1

(2π)3
(−k2)

k2
L

W 2

M2
πΓRχE

(W −MR)2 +Γ2
R/4

|CI
Nπ |2

{
|CL|2

(
| fCC
+1 |2 + | fCC

+3 |2
)
+ |CR|2

(
| fCC
−1 |2 + | fCC

−3 |2
)

+|C−|2
(
| f (−)CC

0+ |2 + | f (−)CC
0− |2

)
+ |C+|2

(
| f (+)CC

0+ |2 + | f (+)CC
0− |2

)}
(4.10)

CI
Nπ

are relevant isospin coefficients in the RS-model and they are given in Table 4.2.
Equation 4.10 is cross-section for the resonant interaction with lepton mass (ml ̸= 0), and the
production amplitudes are given in [13, 14], and also in Appendix G.
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4.1.1 Isospin coefficients for resonant interactions

Table 4.1 shows (in the second subscript of) resonances have either isospin 1/2 or isospin
3/2. On the other hand from Table A.1 for CC interactions we have:

M (ν p → l−pπ
+) =

1√
2

ACC
3/2

M (νn → l−pπ
0) =

1
3
(−ACC

3/2 +ACC
1/2)

M (νn → l−nπ
+) =

1
3
√

2
(ACC

3/2 +2ACC
1/2)

(4.11)

ACC
3/2 comes from resonance with isospin 3/2 and ACC

1/2 comes from resonances with isospin
1/2. According to [7] we have:

1√
2

ACC
3/2 =

√
3 ∑

all I = 3/2
resonances

aCC(R3/2),

1
3

ACC
1/2 =

1√
3 ∑

all I = 1/2
resonances

aCC(R1/2). (4.12)

where aCC(R3/2) and aCC(R1/2) are amplitudes for resonance with isospin 3/2 and 1/2.
Therefore

Ampl(ν p → l−pπ
+) =

√
3 ∑

all I = 3/2
resonances

aCC(R3/2)

Ampl(νn → l−pπ
0) =−

√
2
3 ∑

all I = 3/2
resonances

aCC(R3/2)+

√
1
3 ∑

all I = 1/2
resonances

aCC(R1/2)

Ampl(νn → l−nπ
+) =

√
1
3 ∑

all I = 3/2
resonances

aCC(R3/2)+

√
2
3 ∑

all I = 1/2
resonances

aCC(R1/2)

(4.13)

The same calculation can be done for anti-neutrino interactions and NC interactions, that
is also discussed in [7]. All isospin coefficients for individual resonances in CC and NC
(anti-)neutrino interactions are given in Table 4.2.



44 Resonance Contributions and Nonresonant Background

4.1.2 Helicity amplitudes for resonant Interaction

Now we need to find the helicity amplitudes for resonant interaction (RS-model) from
chapter 3 (Equation 3.34). The CC cross-section for pion production (given in Equation 3.82)
can be calculated for one particular resonance with j = l + 1

2 (like ∆) and P =−(−1)l:

dσ(νN → lR → lNπ)

dk2dW
=

G2
F

2
cos2

θC
1

(2π)3 |q|
−k2

(kL)2
2 j+1

2

{
|CL|2

[
|AV

l++AA
l+|2 +

l(l +2)
4

|(BV
l++BA

l+|2
]

+|CR|2
[
|AV

l+−AA
l+|2 +

l(l +2)
4

|(BV
l+−BA

l+|2
]

+|C−|2
|k|2
(−k2)

[
|S(−)V

l+ +S(−)A
l+ |2 + |S(−)V

l+ −S(−)A
l+ |2

]
+|C+|2

|k|2
(−k2)

[
|S(+)V

l+ +S(+)A
l+ |2 + |S(+)V

l+ −S(+)A
l+ |2

]}
(4.14)

Comparing Equation 4.10 with Equation 4.14 we have:

|A(I)V
l+ ±A(I)A

l+ |2 =|CI
Nπ |2κ

2
χE | fBW (R)|2 | fCC

±1 (R(I, j = l +1/2))|2
l(l +2)

4
|B(I)V

l+ ±B(I)A
l+ |2 =|CI

Nπ |2κ
2
χE | fBW (R)|2 | fCC

±3 (R(I, j = l +1/2))|2

|S(−)(I)V
l+ ±S(−)(I)A

l+ |2 =|CI
Nπ |2κ

2
χE | fBW (R)|2 | f (−)CC

∓0 (R(I, j = l +1/2))|2

|S(+)(I)V
l+ ±S(+)(I)A

l+ |2 =|CI
Nπ |2κ

2
χE | fBW (R)|2 | f (+)CC

∓0 (R(I, j = l +1/2))|2. (4.15)

where | fBW (R)|2 is Breit-Wigner factor (ΓR has been defined in Equation 4.3):

| fBW (R)|2 = ΓR

2π

(
1

(W −MR)2 +Γ2
R/4

)
, (4.16)

and κ2 appears here because the two cross-sections are slightly different:

κ
2 =

(
2π

2W 2

M2 .
2

2 j+1
1
|q|

) 1
2

. (4.17)

Equation 4.15 is absolute square of the helicity amplitudes, therefore it does not say anything
about a possible phase (sign) that might have been carried by an amplitude itself. However
these phases (signs) are very important for evaluation of interferences between resonance
and nonresonant amplitudes as well as among resonances themselves.
Pion production in resonant interaction consists of resonance production and its subsequent
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decay into the Nπ final state:

⟨Nπ,λ2|εα

λ
Fα |N,λ1⟩=⟨Nπ,λ2|RλR⟩⟨RλR|εα

λ
Fα |Nλ1⟩

=⟨Nπ,λ2|RλR⟩⟨Nλ1|(εα

λ
Fα)

†|RλR⟩∗ (4.18)

where λ stands for left and right hand lepton currents. We already discussed about the
resonance production, but now we are going to talk about decay amplitudes.

Decay Amplitudes

The decay amplitude is found by projecting the resonance onto the relevant Nπ final state,
and is also given in [5], but in RS model it is replaced by a complex Breit-Wigner amplitude:

fBW (R) =

√
ΓR

2π

(
1

W −MR + iΓR/2

)
, (4.19)

where ΓR has been given in Equation 4.3. Comparing with Equation 4.15 it is obvious that
the decay amplitudes should be related to κ (Equation 4.17),

√
χE (Table 4.1), and the isospin

Clebsch-Gordan coefficients CI
Nπ

.
Decay amplitudes in RS model [7] also carry a sign that is important for the interference
effect. In principle, production and subsequent decay of a resonance have to be calculated in
the same model in order to obtain a coherent prediction for the pion production and it has
been done in [5]. However, RS model is replacing the latter by the Breit-Wigner factor, and
the sign of the decay amplitudes is missing. Comparing with [5], RS model multiplies the
missing sign to the individual resonances.
One sign is the sign of numerical value of the decay amplitudes (σD) given in [5], and
they are given in Table 4.1 2. The other is the sign of angular momentum Clebsch-Gordan
coefficients C j

Nπ
. The actual angular momentum Clebsch-Gordan coefficients are given in

Appendix G, but from now on C j
Nπ

is only the signs of C j
Nπ

in Table G.1. Therefore

⟨Nπ,λ2|RλR⟩= σ
DC j

Nπ

√
χEκCI

Nπ fBW (4.20)

where σDC j
Nπ

is just a sign.
Now we are ready to define helicity amplitudes for a resonance with definite angular mo-
mentum j, as it is defined in [9]. It is reasonable to consider F j

µ,λ and G j
µ,λ as a vector and

axial helicity amplitudes in the basis (µλ ) where a nucleon of helicity λ1 goes over- via
an intermediate state of helicity λ - into a nucleon of helicity λ2 and a scalar pion. Such

2This sign is provided in the RS model for individual resonances, but it is not based on theoretical approach.
Next chapter we will use an alternative way to extract the resonance’s signs.
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intermediate state is a resonance R (λ = λR) with angular momentum j. Therefore helicity
amplitudes for a resonance can be defined as:

F j
µλ

= F j
−λ2λR

(4.21)

From Equation 4.8, for instance:

F j
µλ= 1

2
= ⟨µ|eα

R FV
α |N,λ1 =

1
2
⟩ (4.22)

Therefore

F j
µλR

= F j
−λ2λR=

1
2
= ⟨Nπ,−λ2|R,λR⟩⟨R,λR|eα

R FV
α |N,λ1⟩

=−⟨Nπ,−λ2|R,λR⟩ fV
−1 for λ1 =−sz1 =

1
2

F j
−λ2,λR=

3
2
=−⟨Nπ,−λ2|R,λR⟩ fV

−3 for λ1 =−sz1 =−1
2
,

(4.23)

where fV is production amplitude for vector part. On the other hand from Equation 3.67 and
Equation 3.73) we have3:

F̃eR
1
2 ,

1
2
(θ) =−F− 1

2
1
2
(θ) =−F j

− 1
2

1
2
(2 j+1)d j

1
2− 1

2
(θ)

F̃eR
1
2 ,− 1

2
(θ) = F− 1

2
3
2
(θ) = F j

− 1
2

3
2
(2 j+1)d j

3
2− 1

2
(θ) (4.24)

for a single resonance. As it was discussed in the previous chapter, F j
µ,λ refer to πN states of

definite total angular momentum but not of definite parity. Parity eigenstates, corresponding
to a definite I value are defined in Equation 3.76 and for j = l ±1/2. Similarly we have:

F j
± 1

2 ,
1
2
=− 1√

2
(AV

l+∓AV
l−), G j

± 1
2 ,

1
2
=∓ 1√

2
(AA

l+±AA
l−)

F j
± 1

2 ,
3
2
=

√
l(l +2)
2
√

2
(BV

l+∓BV
l−), G j

± l
2 ,

1
2
=

√
l(l +2)
2
√

2
(BA

l+∓BA
l−)

F(−)0 j
± 1

2 ,
1
2
=

1√
2

|k|√
−k2

(S(−)V
l+ ±S(−)V

l− ), G(−)0 j
± 1

2 ,
1
2
=

1√
2

|k|√
−k2

(S(−)A
l+ ±S(−)A

l− )

F(+)0 j
± 1

2 ,
1
2
=

1√
2

|k|√
−k2

(S(+)V
l+ ±S(+)V

l− ), G(+)0 j
± 1

2 ,
1
2
=

1√
2

|k|√
−k2

(S(+)A
l+ ±S(+)A

l− ) (4.25)

3Here we ignore the φ dependence of helicity amplitudes for simplicity, because it is already factorized
from cross-section in Equation 3.64.
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where l± referes to resonances with j = l ±1/2.
We can sum up over all resonances to find out the helicity amplitude. Therefore using
Equation 4.25 for j = l ±1/2 we have :

F̃eR
1
2

1
2
(θ) =

1√
2 ∑

j
(2 j+1)(−⟨Nπ,−1

2
|R,λR⟩ fV

−1)d
j
1
2− 1

2
(θ),

F̃eR
1
2− 1

2
(θ) =

1√
2 ∑

j
(2 j+1)(−⟨Nπ,−1

2
|R,λR⟩ fV

−3)d
j
3
2− 1

2
(θ),

F̃eR
− 1

2
1
2
(θ) =∓ 1√

2 ∑
j
(2 j+1)(−⟨Nπ,−1

2
|R,λR⟩ fV

−1)d
j
1
2

1
2
(θ),

F̃eR
− 1

2− 1
2
(θ) =∓ 1√

2 ∑
j
(2 j+1)(−⟨Nπ,−1

2
|R,λR⟩ fV

−3)d
j
3
2

1
2
(θ). (4.26)

Therefore using Equation 4.15, we have:

F̃eR
1
2 ,

1
2
(θ) =− 1√

2 ∑
j
(2 j+1)σDC j

Nπ

√
χEκCI

Nπ fBW fV
−1d j

1
2− 1

2
(θ)

F̃eR
1
2 ,− 1

2
(θ) =− 1√

2 ∑
j
(2 j+1)σDC j

Nπ

√
χEκCI

Nπ fBW fV
−3d j

3
2− 1

2
(θ)

F̃eR
− 1

2 ,
1
2
(θ) =± 1√

2 ∑
j
(2 j+1)σDC j

Nπ

√
χEκCI

Nπ fBW fV
−1d j

1
2

1
2
(θ)

F̃eR
− 1

2 ,− 1
2
(θ) =± 1√

2 ∑
j
(2 j+1)σDC j

Nπ

√
χEκCI

Nπ fBW fV
−3d j

3
2

1
2
(θ). (4.27)

The same calculation can be done for the axial helicity amplitudes, with axial production
amplitude f A. Using fCC

−1 = FV
−1 −FA

−1 we have:

F̃eR
1
2

1
2
(θ)− G̃eR

1
2

1
2
(θ) =−∑

j

2 j+1√
2

σ
D

κ CI
Nπ

√
χE fBW (R) fCC

−1 (R(I, j = l ± 1
2
)) d j

1
2− 1

2
(θ)

F̃eR
1
2− 1

2
(θ)− G̃eR

1
2− 1

2
(θ) =−∑

j

2 j+1√
2

σ
D

κ CI
Nπ

√
χE fBW (R) fCC

−3 (R(I, j = l ± 1
2
)) d j

3
2− 1

2
(θ)

(4.28)

It is very easy to calculate the helicity amplitude for eL, using the following symmetry
relations among standard helicity amplitudes:

F−µ,−λ (θ) =−ei(λ−µ)πFµ,λ (θ)

G−µ,−λ (θ) = ei(λ−µ)πFµ,λ (θ) (4.29)
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where the explicit expression is given in Table 4.3: Therefore:

F̃eL
− 1

2 ,
1
2
(θ) = F1

2− 3
2
(θ) =−F− 1

2
3
2

=−∑
j

F j
− 1

2
3
2
(2 j+1)d j

3
2− 1

2
(θ) =−F̃eR

1
2− 1

2
(θ)

F̃eL
− 1

2 ,− 1
2
(θ) =−F1

2− 1
2
(θ) =−F− 1

2
1
2
(θ)

=−∑
j

F j
− 1

2
1
2
(2 j+1)d j

1
2− 1

2
(θ) = F̃eR

1
2

1
2
(θ). (4.30)

But there is an additional minus for axial part due to Equation 4.29.

G̃eL
− 1

2 ,
1
2
(θ) = G 1

2− 3
2
(θ) = G− 1

2
3
2

= ∑
j

G j
− 1

2
3
2
(2 j+1)d j

3
2− 1

2
(θ) = G̃eR

1
2− 1

2
(θ)

G̃eL
− 1

2 ,− 1
2
(θ) =−G 1

2− 1
2
(θ) = G− 1

2
1
2
(θ)

= ∑
j

G j
− 1

2
1
2
(2 j+1)d j

1
2− 1

2
(θ) =−G̃eR

1
2

1
2
(θ). (4.31)

All symmetry relations between the helicity amplitudes can be found in Table 4.4. Therefore:

F̃eL
− 1

2
1
2
(θ)− G̃eL

− 1
2

1
2
(θ)

=∑
j

2 j+1√
2

σ
D

κ CI
Nπ

√
χE fBW (R) ( fV

−3 + f A
−3)(R(I, j = l ± 1

2
)) d j

3
2− 1

2
(θ)

F̃eL
− 1

2− 1
2
(θ)− G̃eL

− 1
2− 1

2
(θ)

=−∑
j

2 j+1√
2

σ
D

κ CI
Nπ

√
χE fBW (R) ( fV

−1 + f A
−1)(R(I, j = l ± 1

2
)) d j

1
2− 1

2
(θ) (4.32)

According to [9]

fV
−1,−3,0−+ f A

−1,−3,0− = fV+A
−1,−3,0− =∓ fV−A

+1,+3,0+ =∓ fCC
+1,+3,0+ ( for j± 1

2
) (4.33)
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Therefore

F̃eL
− 1

2
1
2
(θ)− G̃eL

− 1
2

1
2
(θ)

=∓∑
j

2 j+1√
2

σ
D

κ CI
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2
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2
(θ)

F̃eL
− 1
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2
(θ)− G̃eL

− 1
2− 1

2
(θ)

=±∑
j

2 j+1√
2

σ
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κ CI
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√
χE fBW (R) ( fCC

+1 )(R(I, j = l ± 1
2
)) d j

1
2− 1

2
(θ) (4.34)

Like Equation 4.21- 4.23, for e− we have:

F0(−) j
µλ

= F0(−) j
−λ2λR

= ⟨Nπ,−λ2|R,λR⟩⟨R,λR|eα
−FV

α |N,λ1⟩ (4.35)

From Equation 4.8

F j
−λ2,λR=± 1

2
= ⟨Nπ,−λ2|R,λR⟩ fV

0± for λ1 =−sz1 =∓1
2

(4.36)

where fV is production amplitude for vector part. On the other hand from Equation 3.67 and
Equation 3.73 we have:

F̃e−
− 1

2− 1
2
(θ) =−F0(−)

1
2

1
2

(θ) =−∑
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F0(−) j
1
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1
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2
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|k|√
−k2
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j
1
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1
2
(θ)

(4.37)

and extra factor from Equation 4.25 should be multiplied:

F̃e−
− 1

2− 1
2
(θ)− G̃e−

− 1
2− 1

2
(θ)

=− |k|√
−k2 ∑

j

2 j+1√
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κ CI
Nπ
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χE fBW (R) fCC

0+ (R(I, j = l ± 1
2
)) d j

1
2

1
2
(θ) (4.38)

It is important to notice that the sign of C j
Nπ

is always positive sign for j = l + 1
2 but it can

have different signs for resonances with j = l − 1
2 (see Table G.1).
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Below we summarize the helicity amplitudes for all helicities:
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(4.39)

where f±1
±3
(R) and f (±)

0± (R) are resonance production amplitudes given in Appendix G for

both CC and NC neutrino interactions.
An important point here is due to symmetry property of d j

λ µ
(θ) [15]

d j
λ µ

(θ) = (−1) j+λ d j
λ−µ

(π −θ), (4.40)

the cross-section of individual resonance is symmetric, i.e. dσ/dθ(π −θ) = dσ/dθ(θ).

4.1.3 Form-factors

The resonance production amplitudes depend on vector and axial form-factor which is dipole
in [7], but in this work we use a form-factor proposed in [17] for ∆ resonance:

FV (W,k2) =
1
2

(
1− k2

(M+W )2

) 1
2
√

3
(

G f3
V (W,k2)

)2
+
(

G f1
V (W,k2)

)2
(4.41)

for vector form-factor where

G f3
V (W,k2) =

1
2
√

3

[
CV

4
W 2 + k2 −M2

2M2 +CV
5

W 2 −K2 −M2

2M2 +
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3
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(W +M)
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V (W,k2) =

1
2
√
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[
CV

4
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2M2 +CV
5

W 2 −K2 −M2

2M2 +CV
3
(M+W )M− k2

MW

]
,

(4.42)
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and

CV
3 = 2.13

(
1− k2

4M2
V

)−1(
1− k2

M2
V

)−2

,

CV
4 = −1.51

(
1− k2

4M2
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)−1(
1− k2

M2
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)−2

,

CV
5 = 0.48

(
1− k2

4M2
V

)−1(
1− k2

0.776M2
V

)−2

. (4.43)

For axial vector form-factor:

FA(W,k2) =

√
3

2

(
1− k2

(M+W )2

) 1
2
[

1− W 2 + k2 −M2

8M2

]
CA

5 (k
2), (4.44)

where

CA
5 (k

2) =
CA

5 (0)(
1− k2

M2
A

)2 . (4.45)

MV , MA, and CA
5 (0) are adjustable parameters that can be fitted to data. MV = 0.84 has been

fitted to electron scattering data, but MA and CA
5 (0) should be fitted to the neutrino scattering

data.
For higher resonances (N ̸= 0) we propose a slightly different form-factor (based on [9]) but
with same assumption as in [17]:
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1
2

(
1− k2

(M+W )2

) 1
2
(

1− k2

4M2

)−N
2
√

3
(

G f3
V (W,k2)

)2
+
(

G f1
V (W,k2)

)2

FA(W,k2) =

√
3

2

(
1− k2

(M+W )2

) 1
2
(

1− k2

4M2

)−N
2
[

1− W 2 + k2 −M2

8M2

]
CA

5 (k
2),

(4.46)

where N is given in Table 4.1.

4.2 Nonresonance Background

In addition to resonant interaction, pion can be also produced via nonresonant interaction,
and it has been known for decades [8, 9]. The nonresonant interaction can be derived
from a model called σ -model [11]. The σ -model is a field theoretical model based on
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a)

W

N N′

π

b)
W

N N′

π

c)

W

π

N N′

π

d)

W

N N′

π

e)

W

π

N N′

π

Fig. 4.1 Nonresonant pion production diagrams: a) nucleon pole (NP), b) crossed nucleon
pole (CNP), c) pion-in-flight (PIF), d) contact term (CT), e) pion pole (PP)

SU(2)×SU(2) chiral symmetry and it is consistent with the symmetries of QCD in the limit
of massless up and down quarks. The ingredients of the model are nucleon field (ψ(x)), pion
field (φ(x)) and a scalar σ field.
Pion is pseudoscalar and the Lagrangian should be scalar, therefore the simplest interaction
lagrangian can be pseudoscalar (linear with φ(x)) or pseudovector (linear with ∂µφ(x)),
since they both give identical results for nucleons, satisfying the free Dirac equation. The
lagrangian can be linear to a new (σ ) field (linear σ -model) or it can be nonlinear to σ which
is not a new field but a function of π field (non-linear σ -model).
The earlier work was based [8, 9] on linear σ -model with pseudoscalar interaction that
provides 3 Born graphs and it has been employed by Rein [9], but the new σ particle has
never been found. On the other hand there is a recent work [10], based on non-linear σ -model
with pseudovector interaction, and we are going to follow this approach in this thesis.

4.2.1 Charged-Current Interactions

The diagrams (loop corrections are not included) for nonresonant charged-current interaction
proposed in [10] are shown in Figure 4.1. In [10] there are two more diagrams responsible
for ∆ resonance, and we do not take them into account here, since RS model is responsible
for resonant interaction.
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The transition amplitudes for the proposed diagrams (Figure 4.1) are the following [10]:

M NP
CC =CNP cosθC

gA√
2 fπ

1
s−M2 ū(p2) ̸ q γ5(̸ p1+ ̸ k+M)εµ [FV
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1√
2 fπ
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Fρ((k−q)2) ̸ k u(p1), (4.47)

where
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]
,
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γ5 +

̸ k
m2

π − k2 kµ
γ5

]
. (4.48)

The vector form factors are:

FV
1 (k2) =

1
2
(
F p

2 (k
2)−Fn

1 (k
2)
)
, µV FV

2 (k2) =
1
2
(
µpF p

2 (k
2)−µnFn

2 (k
2)
)
. (4.49)

Like [10], we use the parametrization of Galster and collaborators [19]:

FN
1 =

GN
E + τGN

M
1+ τ

, µNFN
2 =

GN
M −GN

E
1+ τ

,

Gp
E =

Gp
M

µp
=

Gn
M

µn
=−(1+λnτ)

Gn
E

µnτ
=

(
1

1− k2/M2
D

)2

, (4.50)

where τ =−k2/4M2,MD = 0.843GeV,µp = 2.792847,µn =−1.913043 and λn = 5.6. The
axial form factor is:

GA(k2) =
gA

(1− k2/M2
A)

2 , gA = 1.26, (4.51)

where MV = 0.84 GeV and MA = 1.05 GeV, and

Fρ(t) = 1/(1− t/M2
ρ), (4.52)
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where mρ = 0.7758 GeV, as it is proposed in [10].
Conservation of Vector Current (CVC) requires (see H):

FPF(k2) = FV
CT (k

2) = 2FV
1 (k2). (4.53)

CNP,CCNP,CPF ,CCT and CPP are isospin coefficients and they are given in Table 4.5 for
different neutrino and anti-neutrino channels4. To calculate the helicity amplitudes of the
above diagrams, From Equation 3.6 and Equation 3.27, first we need to calculate invariant
amplitudes (Vk and Ak) from transition amplitudes for different channels.

⟨ Nπ| eρJρ |N ⟩= ∑
k

ūN(p2) [Vk(s, t,u)O(Vk)−Ak(s, t,u)O(Ak)]uN(p1). (4.54)

Here we calculate the invariant amplitudes of different diagrams given in Equation 4.47 and
we start with nucleon pole (NP) diagram by using Equation 4.48

⟨eρJNP
ρ ⟩nπ+

=
gA√
2 fπ

2F1(k2)
1

s−M2 ū(p2) ̸ q γ5(̸ p1+ ̸ k+M) ̸ εu(p1) (4.55)

− gA√
2 fπ

2µV F2(k2)

2M
1

s−M2 ū(p2) ̸ q γ5(̸ p1+ ̸ k+M)[̸ ε, ̸ k]u(p1) (4.56)

− gA√
2 fπ

GA(k2)
1

s−M2 ū(p2) ̸ q γ5(̸ p1+ ̸ k+M)

(̸
ε +

̸ k
mπ − k2 (εk)

)
γ5u(p1)

(4.57)

We need to expand the above equation in terms of O(Vk) and O(Ak) given in Table 3.1. We
start with Equation 4.55 by add and subtract qε

qk ̸ q term

gA√
2 fπ

2F1(k2) ū(p2)γ5

{
− 1

s−M2 ̸ q (̸ p1+ ̸ k+M) ̸ ε + qε

qk
̸ q− qε

qk
̸ q
}

u(p1)

=
gA√
2 fπ

2F1(k2) ū(p2)γ5

{
1

s−M2

[
− ̸ q (̸ p1+ ̸ k+M) ̸ ε +(s−M2)

qε

qk
̸ q
]
− qε

qk
̸ q
}

u(p1)

(4.58)

=
gA√
2 fπ

2F1(k2) ū(p2)

{
1

s−M2

[
2M
qk

O(V2)+2MO(V1)

]
− 1

qk
O(V3)− γ5

qε

qk
̸ q
}

u(p1).

(4.59)

4Isospin coefficients for pπ+ and nπ+ channels are given in [10], and isospin coefficients for pπ0 can be
easily calculated from Table A.0.3.
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From Equation 4.58 to Equation 4.59 we used

ū(p2)γ5

{
− ̸ q (̸ p1+ ̸ k+M) ̸ ε +(s−M2)

qε

qk
̸ q
}

u(p1)

ū(p2)γ5

{
− ̸ q(̸ p1 ̸ ε+ ̸ k ̸ ε+ ̸ ε ̸ p1)+(k2 +2p1k)

qε

qk
(̸ p1− ̸ p2+ ̸ k)

}
u(p1)

ū(p2)γ5

{
− ̸ q (2ε p1+ ̸ k ̸ ε)+(k2 +2p1k)

qε

qk
(2M+ ̸ k)

}
u(p1)

ū(p2)γ5

{
− ̸ q ̸ k ̸ ε +(2M+ ̸ k)

[
−2ε p1 +(k2 +2p1k)

qε

qk

]}
u(p1) (4.60)

and

ū(p2)γ5 ̸ q ̸ k ̸ εu(p1) = ū(p2)γ5(̸ p1− ̸ p2+ ̸ k) ̸ k ̸ εu(p1)

= ū(p2)γ5(̸ p1 +M+ ̸ k) ̸ k ̸ εu(p1)

= ū(p2)γ5(̸ p1 ̸ k ̸ ε+ ̸ k ̸ ε ̸ p1 + k2 ̸ ε)u(p1)

= ū(p2)γ5(̸ p1 ̸ k ̸ ε− ̸ k ̸ p1 ̸ ε +2 ̸ kp1ε + k2 ̸ ε)u(p1)

= ū(p2)γ5
[
(−2 ̸ k ̸ p1 +2p1k+ k2) ̸ ε +2(ε p1) ̸ k

]
u(p1) (4.61)

for the first term of Equation 4.60, and

−2ε p1 +(k2 +2p1k)
qε

qk
=−ε(p1 + p2 +q− k)+(k2 +2p1k)

qε

qk

=−2εP− εq+ εk+ k(k+2p1 −q+q)
qε

qk

=−εq+ εk+
1
qk

[
−2(εP)(qk)+ k(2P)(qε)+(qk)(qε)

]
= εk− 1

qk

[
(2Pε)(qk)− (2Pk)(qε)

]
(4.62)
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for the second term of Equation 4.60, where P = 1
2(p1 + p2). Substituting Equation 4.61 and

Equation 4.62) in Equation 4.60, it is straightforward to derive Equation 4.59:

ū(p2)
{

γ
5 [2 ̸ k ̸ p1 ̸ ε − (2p1k+ k2) ̸ ε −2(ε p1) ̸ k

]
+2M

[
γ5εk+

1
qk

O(V2)

]
+ γ5 ̸ k

[
−2ε p1 +(k2 +2p1k)

qε

qk

]}
u(p1)

=ū(p2)
{

2M
[

γ5εk+
1
qk

O(V2)

]
+ γ5 ̸ k(2 ̸ p1 ̸ ε −4ε p1)− γ5 ̸ ε(2p1K + k2)

+ γ5 ̸ k(k2 +2p1k)
qε

qk

}
u(p1)

=ū(p2)
{

2M
[

γ5εk+
1
qk

O(V2)

]
−2γ5 ̸ k ̸ ε ̸ p1 + γ5

1
qk

[
− ̸ ε(qk)(2p1K + k2)+ ̸ k(k2 +2p1k)qε

]}
u(p1)

=ū(p2)
{2M

qk
O(V2)−2Mγ5(̸ k ̸ ε − εk)− 1

qk
(s−M2)O(V3)

}
u(p1) (4.63)

where using εk = 1
2 ̸ ε ̸ k + 1

2 ̸ k ̸ ε can lead to Equation 4.59. There is yet one term in
Equation 4.59 that is not expanded over O(Vi). This term will be considered with PF and the
vector part of CT amplitudes.
We can continue from Equation 4.56:

gA√
2 fπ

2µV F2(k2)

2M
1

s−M2 ū(p2){γ5 ̸ q(̸ p1+ ̸ k+M)[̸ ε, ̸ k]}u(p1)

=B ū(p2)γ5 {̸ q(̸ p1+ ̸ k−M)[̸ ε, ̸ k]+2 ̸ qM[̸ ε, ̸ k]}u(p1)

=B ū(p2)γ5 {̸ q (̸ p1 [̸ ε, ̸ k]− [̸ ε, ̸ k] ̸ p1)+ ̸ q ̸ k[̸ ε, ̸ k]+2M ̸ q[̸ ε, ̸ k]}u(p1)

=B ū(p2)γ5 {̸ q [̸ p1, [̸ ε, ̸ k]]+ ̸ k[̸ ε, ̸ k]+2 ̸ qM[̸ ε, ̸ k]}u(p1) (4.64)

=B ū(p2)γ5 ̸ q
{
−4(̸ ε p1k− ̸ kp1ε)−2

(̸
εk2− ̸ k(εk)

)
+2M[̸ ε, ̸ k]

}
u(p1) (4.65)

=
gA√
2 fπ

2µV F2(k2)

2M
1

s−M2 ū(p2)
{

2(k2 +2p1k)O(V1)−4M[O(V3)+O(V4)]
}

u(p1).

(4.66)

From Equation 4.64 to Equation 4.65 we used the following relation:

[γρ , [γµ ,γν ]] = 4(ηµρ
γ

ν −η
νρ

γ
µ)⇒ [̸ p1, [̸ ε, ̸ k]] = 4((p1ε) ̸ k− (p1k) ̸ ε)

γ
ν , [γµ ,γν ] = 2(ηµν

γ
ν −η

νν
γ

µ)⇏ k[̸ ε, ̸ k] = 2
(
(εk) ̸ k− k2 ̸ ε

)
(4.67)
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and from Equation 4.65) to Equation 4.66 we used

ū(p2)γ5 ̸ q
{
−4(̸ ε p1k− ̸ kp1ε)−2

(̸
εk2− ̸ k(εk)

)}
u(p1)

=ū(p2)γ5(̸ p1− ̸ p2+ ̸ k)
{
−2 ̸ ε(2p1k+ k2)+2 ̸ k(2p1ε + εk)

}
u(p1)

=ū(p2)γ5
{
−2(2p1k+ k2)(̸ p1 +M+ ̸ k) ̸ ε +2(2p1ε + εk)(̸ p1 +M+ ̸ k) ̸ k

}
u(p1)

=ū(p2)γ5
{
−2(2p1k+ k2)(M ̸ ε− ̸ ε ̸ p1 +2ε p1+ ̸ k ̸ ε)+2(2p1ε + εk)(M ̸ k

− ̸ k ̸ p1 +2kp1 + k2)
}

u(p1)

=ū(p2)γ5
{
−2(2p1k+ k2)(2ε p1+ ̸ k ̸ ε)+2(2p1ε + εk)(2k ̸ p2 + k2)

}
u(p1)

=ū(p2)γ5
{

2(2p1k+ k2)(− ̸ k ̸ ε + kε)
}

u(p1)

=ū(p2)γ5

{
2(2p1k+ k2)(− ̸ k ̸ ε + 1

2
(̸ k ̸ ε+ ̸ ε ̸ k)

}
u(p1)

=ū(p2)γ5
{

2(2p1k+ k2)O(v1)
}

u(p1)

(4.68)

and

ū(p2)γ52M ̸ q[̸ ε, ̸ k]u(p1)

=2Mū(p2)γ5(̸ p1− ̸ p2+ ̸ k)[̸ ε, ̸ k]u(p1)

=2Mū(p2)γ5 {(̸ p1 +M+ ̸ k)[̸ ε, ̸ k]}u(p1)

=2Mū(p2)γ5 {(̸ p1 −M+ ̸ k)[̸ ε, ̸ k]+2M[̸ ε, ̸ k]}u(p1)

=2Mū(p2)γ5 {[̸ p1, [̸ ε, ̸ k]]+ ̸ k[̸ ε, ̸ k]+2M[̸ ε, ̸ k]}u(p1)

=4Mū(p2)γ5
{

2((p1ε) ̸ k− (p1k) ̸ ε)+
(
(εk) ̸ k− k2 ̸ ε

)
+M[̸ ε, ̸ k]

}
u(p1)

=4Mū(p2)γ5 {̸ k(k+2p1)ε)− ̸ ε(k+2p1)k+M[̸ ε, ̸ k]}u(p1)

=4Mū(p2)γ5 {̸ k(q+2P)ε)− ̸ ε(q+2P)k+M[̸ ε, ̸ k]}u(p1)

=4Mū(p2){−O(V 3)−O(V4)}u(p1) (4.69)

where we use Equation 4.67, Dirac equation and kinematics in isobaric frame given in
Appendix A.
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From Equation 4.57:

gA√
2 fπ

GA(k2)
1

s−M2 ū(p2) ̸ q γ5(̸ p1+ ̸ k+M)

(̸
εγ5 +

̸ k
mπ − k2 (εk)γ5

)
u(p1)

=
gA√
2 fπ

GA(k2)
1

s−M2 ū(p2) ̸ q(̸ p2+ ̸ q−M)

(̸
ε +

̸ k
mπ − k2 (εk)

)
u(p1) (4.70)

=
gA√
2 fπ

GA(k2) ū(p2)

{
−2M

s−M2 [O(A1)+O(A3)]+
1
M

O(A4)−
1

m2
π − k2[(

1+
4M2

s−M2

)
O(A8)+2MO(A7)

]}
u(p1). (4.71)

From Equation 4.70 Equation 4.71 we use:

ū(p2){̸ q(̸ p2+ ̸ q−M) ̸ ε}u(p1)

=ū(p2)
{
(− ̸ p2 ̸ q+2p2.q−M ̸ q+m2

π) ̸ ε
}

u(p1)

=ū(p2)
{
−2M ̸ q ̸ ε +(2p2.q+m2

π) ̸ ε
}

u(p1)

=ū(p2)
{
−M(̸ q ̸ ε− ̸ ε ̸ q+2εq)+(s−M2) ̸ ε

}
u(p1)

=ū(p2)

{
−2M(O(A1)+O(A3))+(s−M2)

1
M

O(A4)

}
u(p1) (4.72)

and

ū(p2) {̸ q(̸ p2+ ̸ q−M) ̸ k}εku(p1)

=ū(p2)
{
(− ̸ p2 ̸ q+2p2.q+m2

π −M ̸ q) ̸ k
}

εku(p1)

=ū(p2)
{̸

k(2p2.q+m2
π)−2M(̸ p1− ̸ p2+ ̸ k) ̸ k

}
εku(p1)

=ū(p2)
{̸

k(s−M2)−2M(− ̸ k ̸ p1 +2k.p1 −M ̸ k+ k2)
}

εku(p1)

=ū(p2)
{
(̸ k−2M)(s−M2)+4M2 ̸ k

}
εku(p1)

=ū(p2)
{
−(4M2 +(s−M2))O(A8)−2M(s−M2)O(A7)

}
u(p1) (4.73)

Now we will take into account ⟨eρJPF
ρ ⟩nπ+

and the vector part of ⟨eρJCT
ρ ⟩nπ+

, and the
remaining term from Equation 4.59:

− gA√
2 fπ

1
t −m2

π

FPF(k2)ū(p2) γ5 [2qε − kε] u(p1)−
1√
2 fπ

ū(p2) ε
µ

γµ gAFV
CT (k

2) γ5 u(p1)

− gA√
2 fπ

2F1(k2) ū(p2)γ5
qε

qk
̸ qu(p1)

(4.74)
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Using FPF(k2) = FV
CT (k

2) = 2F1(k2) = F(k2):

=− gA√
2 fπ

1
t −m2

π

F(k2)ū(p2)

{
2M(2εq− kε)+(t −m2

π)(−
qε

qk
̸ q+ ̸ ε)

}
γ5u(p1)

=− gA√
2 fπ

1
t −m2

π

F(k2)ū(p2)
{

2M
1
qk

(2εq(qk)− kε(qK))+(k2 −2qk)
1
qk

(−qε (̸ k−2M)

+ ̸ εqk)
}

γ5u(p1)

=− gA√
2 fπ

1
t −m2

π

F(k2)
1
qk

ū(p2)
{

4M(qk)εq−2M(qk)kε +2Mqε(k2 −2qk)

−qε ̸ k(k2 −2qk)+ ̸ εqk
}

γ5u(p1)

=− gA√
2 fπ

1
t −m2

π

F(k2)
1
qk

ū(p2)
{

2M[−(qk)kε +(qε)k2]+ (k2 −2qk)(−qε ̸ k+ ̸ εqk)
}

γ5u(p1)

=
gA√
2 fπ

ū(p2)

{
F
qk

O(V3)−
F

t −m2
π

2M
qk

O(V5)

}
u(p1) (4.75)

The last step is ⟨eρJPP
ρ ⟩nπ+

and the axial part of the contact term ⟨eρJCT
ρ ⟩nπ+

, which are
related to Fρ((k−q)2):

1√
2 fπ

Fρ((k−q)2)ū(p2)

[
(εk)

̸ k
k2 −mπ

− ̸ ε
]

u(p1)

=
1√
2 fπ

Fρ((k−q)2)ū(p2)

[
− 1

k2 −mπ

O(A8)−
1
M

O(A4)

]
u(p1) (4.76)

Therefore using Equation 4.54- 4.76, the coefficients of O(Vk) and O(Ak) are Vk and Ak. We
summarise the invariant amplitudes of νn → µnπ+

V nπ+
1 =

gA√
2 fπ

(
4M

s−M2 F1(k2)+
2µV F2(k2)

M

)
V nπ+

2 =
gA√
2 fπ

1
qk

4M
s−M2 F1(k2)

V nπ+
3 = − gA√

2 fπ

4
s−M2 µV F2(k2)

V nπ+
4 = − gA√

2 fπ

4
s−M2 µV F2(k2)

V nπ+
5 = − gA√

2 fπ

4M
qk

1
t −m2

π

F1(k2) (4.77)
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Anπ+
1 = − gA√

2 fπ

2M
s−M2 GA(k2)

Anπ+
3 = − gA√

2 fπ

2M
s−M2 GA(k2)

Anπ+
4 =

gA√
2 fπ

1
M

GA(k2)− 1√
2 fπ

1
M

Fρ

(
(k−q)2)

Anπ+
7 = − gA√

2 fπ

2M
m2

π − k2 GA(k2)

Anπ+
8 = − gA√

2 fπ

1
m2

π − k2

(
1+

4M2

s−M2

)
GA(k2)+

1√
2 fπ

1
m2

π − k2 Fρ

(
(k−q)2)

(4.78)

Similarly invariant amplitude of crossed nucleon pole (CNP) diagrams can be calculated for
ν p → µ pπ+ channel.

⟨eρJCNP
ρ ⟩pπ+

=
gA√
2 fπ

2F1(k2)
1

u−M2 ū(p2) ̸ ε (̸ p2− ̸ k+M) ̸ q γ5u(p1) (4.79)

− gA√
2 fπ

2µV F2(k2)

2M
1

u−M2 ū(p2) [̸ ε, ̸ k](̸ p2− ̸ k+M) ̸ q γ5u(p1) (4.80)

− gA√
2 fπ

GA(k2)
1

u−M2 ū(p2)

(̸
ε +

̸ k
mπ − k2 (εk)

)
γ5(̸ p2− ̸ k+M) ̸ q γ5u(p1)

(4.81)

again we add and subtract qε

qk ̸ q term to Equation 4.79, and with the Equation 4.60- 4.62 we
have

gA√
2 fπ

2F1(k2) ū(p2)

{
1

u−M2 ̸ ε (̸ p2− ̸ k+M) ̸ q+ qε

qk
̸ q− qε

qk
̸ q
}

γ5u(p1)

=
gA√
2 fπ

2F1(k2) ū(p2)

{
1

u−M2

[̸
ε (̸ p2− ̸ k+M) ̸ q+(u−M2)

qε

qk
̸ q
]
− qε

qk
̸ q
}

γ5u(p1)

(4.82)

=
gA√
2 fπ

2F1(k2) ū(p2)

{
1

u−M2

[
2M
qk

O(V2)+2MO(V1)

]
+

1
qk

O(V3)−
qε

qk
̸ q
}

γ5u(p1).

(4.83)
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From Equation 4.82) to Equation 4.83 we used

ū(p2)
{
̸ ε (̸ p2− ̸ k+M) ̸ q+(u−M2)

qε

qk
̸ q
}

γ5u(p1)

ū(p2)
{
(̸ ε ̸ p2+ ̸ p2 ̸ ε− ̸ ε ̸ k) ̸ q+(k2 −2p2k)

qε

qk
(̸ p1− ̸ p2+ ̸ k)

}
γ5u(p1)

ū(p2)
{
(2ε p2− ̸ ε ̸ k) ̸ q+(k2 −2p2k)

qε

qk
(−2M+ ̸ k)

}
γ5u(p1)

ū(p2)
{
− ̸ ε ̸ k ̸ q+(2M− ̸ k)

[
2ε p2 +(k2 −2p2k)

qε

qk

]}
γ5u(p1) (4.84)

First term of Equation 4.84 is:

ū(p2) ̸ ε ̸ k ̸ qγ5u(p1) = ū(p2) ̸ ε ̸ k(̸ p1− ̸ p2+ ̸ k)γ5u(p1)

= ū(p2) ̸ ε ̸ k(−M− ̸ p2+ ̸ k)γ5u(p1)

= ū(p2)(− ̸ p2 ̸ ε ̸ k− ̸ ε ̸ k ̸ p2 + k2 ̸ ε)γ5u(p1)

= ū(p2)(̸ ε ̸ p2 ̸ k−2ε p2 ̸ k− ̸ ε ̸ k ̸ p2 + k2 ̸ ε)γ5u(p1)

= ū(p2)
(̸

ε[2 ̸ p2 ̸ k−2kp2 + k2]−2ε p2 ̸ k
)

γ5u(p1)

(4.85)

and second term of Equation 4.84 is:

2ε p2 +(k2 −2p2k)
qε

qk
= ε(p1 + p2q+ k)+(k2 −2p2k)

qε

qk

= 2εP− εq+ εk+ k(k−2p2 −q+q)
qε

qk

=−εq+ εk+
1
qk

[
2(εP)(qk)− k(2P)(qε)+(qk)(qε)

]
= εk+

1
qk

[
(2Pε)(qk)− (2Pk)(qε)

]
(4.86)
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Substituting Equation 4.85 and Equation 4.86 in Equation 4.84, it is straightforward to derive
Equation 4.83:

ū(p2)
{
− ̸ ε ̸ k ̸ q+(2M− ̸ k)

[
2ε p2 +(k2 −2p2k)

qε

qk

]}
γ5u(p1)

= ū(p2)
{
− ̸ ε[2 ̸ p2 ̸ k−2kp2 + k2]+2ε p2 ̸ k+2M[

1
qk

γ5O(V2)− εk]

+ ̸ k
[

2ε p2 +(k2 −2p2k)
qε

qk

]}
γ5u(p1)

= ū(p2)
{

2M[
1
qk

γ5O(V2)− εk]+2[ε p2− ̸ ε ̸ p2] ̸ k

+ ̸ ε(2kp2 − k2)+ ̸ k(k2 −2p2k)
qε

qk

}
γ5u(p1)

= ū(p2)
{2M

qk
γ5O(V2)−2Mεk+2 ̸ p2 ̸ ε ̸ k+ 1

qk

[̸
ε(qk)(2kp2 − k2)+ ̸ k(k2 −2p2k)qε

]}
γ5u(p1)

= ū(p2)
{2M

qk
γ5O(V2)+2M(̸ ε ̸ k− εk)+

1
qk

(u−M2)(̸ kqε− ̸ εqk)
}

γ5u(p1)

= ū(p2)
{2M

qk
O(V2)+2MO(V1)+

1
qk

(u−M2)O(V3)
}

u(p1)

(4.87)

where we used εk = 1
2 ̸ ε ̸ k+ 1

2 ̸ k ̸ ε for the last line. There is yet one term in Equation 4.83
that is not expanded over O(Vk). This term will be considered with PF and the vector part of
CT amplitudes.
Equation 4.80) can be also expanded over O(Vk) with the help of Equation 4.67 - 4.91:

− gA√
2 fπ

2µV F2(k2)

2M
1

u−M2 ū(p2){[̸ ε, ̸ k](̸ p2− ̸ k+M) ̸ q}γ5u(p1)

=B ū(p2){[̸ ε, ̸ k](̸ p2− ̸ k−M) ̸ q+2M[̸ ε, ̸ k] ̸ q}γ5u(p1)

=B ū(p2){([̸ ε, ̸ k] ̸ p2− ̸ p2[̸ ε, ̸ k]) ̸ q− [̸ ε, ̸ k] ̸ k ̸ q+2M[̸ ε, ̸ k] ̸ q}γ5u(p1)

=B ū(p2){[[̸ ε, ̸ k], ̸ p2]− [̸ ε, ̸ k] ̸ k+2M[̸ ε, ̸ k]} ̸ qγ5u(p1) (4.88)

=B ū(p2)
{

4(̸ ε p2k− ̸ kp2ε)+2
(̸

εk2− ̸ k(εk)
)
+2M[̸ ε, ̸ k]

}
̸ qγ5u(p1) (4.89)

=− gA√
2 fπ

2µV F2(k2)

2M
1

u−M2 ū(p2)
{
−2(k2 +2p2k)O(V1)−4M[O(V3)−O(V4)]

}
u(p1).

(4.90)
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From Equation 4.88 to Equation 4.89 we used Equation 4.67. From Equation 4.89 to
Equation 4.90 we used Equation 4.68 and:

ū(p2)2M[̸ ε, ̸ k] ̸ qγ5u(p1)

=−2Mū(p2)γ5[̸ ε, ̸ k](̸ p1− ̸ p2+ ̸ k)u(p1)

=−2Mū(p2)γ5 {[̸ ε, ̸ k](M− ̸ p2+ ̸ k)}u(p1)

=−2Mū(p2)γ5 {[̸ ε, ̸ k](−M− ̸ p2+ ̸ k)+2M[̸ ε, ̸ k]}u(p1)

=−2Mū(p2)γ5 {[̸ p2, [̸ ε, ̸ k]]+ ̸ k[̸ ε, ̸ k]+2M[̸ ε, ̸ k]}u(p1)

=−4Mū(p2)γ5
{

2((p2ε) ̸ k− (p2k) ̸ ε)−
(
(εk) ̸ k− k2 ̸ ε

)
+M[̸ ε, ̸ k]

}
u(p1)

=−4Mū(p2)γ5 {̸ k(−k+2p2)ε)− ̸ ε(−k+2p2)k+M[̸ ε, ̸ k]}u(p1)

=−4Mū(p2)γ5 {̸ k(−q+2P)ε)− ̸ ε(−q+2P)k+M[̸ ε, ̸ k]}u(p1)

=−4Mū(p2)γ5 {O(V 3)−O(V4)}u(p1) (4.91)

and Equation 4.81 can be expanded over O(Ak) by using Equation 4.72 - 4.73:

gA√
2 fπ

GA(k2)
1

u−M2 ū(p2)

(̸
εγ5 +

̸ k
m2

π − k2 (εk)γ5

)
(̸ p2− ̸ k+M) ̸ qγ5u(p1)

gA√
2 fπ

GA(k2)
1

u−M2 ū(p2)

(̸
ε +

̸ k
m2

π − k2 (εk)
)
(̸ p2− ̸ k−M) ̸ qu(p1)

gA√
2 fπ

GA(k2)
1

u−M2 ū(p2)

(̸
ε +

̸ k
m2

π − k2 (εk)
)
(̸ p1− ̸ q−M) ̸ qu(p1) (4.92)

=
gA√
2 fπ

GA(k2) ū(p2)

{
−2M

u−M2 [O(A1)−O(A3)]−
1
M

O(A4)−
1

m2
π − k2[(

1+
4M2

u−M2

)
O(A8)−2MO(A7)

]}
u(p1). (4.93)

From Equation 4.92 to Equation 4.93 we use:

ū(p2) {̸ ε (̸ p1− ̸ q−M) ̸ q}u(p1)

=ū(p2)
{̸

ε (̸ p1 ̸ q−M ̸ q−m2
π)
}

u(p1)

=ū(p2)
{̸

ε(− ̸ q ̸ p1 +2p1q−M ̸ q−m2
π)
}

u(p1)

=ū(p2)
{
−2M ̸ ε ̸ q+(2p1q−m2

π) ̸ ε
}

u(p1)

=ū(p2)
{
−M(̸ ε ̸ q− ̸ q ̸ ε +2εq)− (u−M2) ̸ ε

}
u(p1)

=ū(p2)

{
2M(−O(A1)+O(A3))− (u−M2)

1
M

O(A4)

}
u(p1) (4.94)
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and

ū(p2){̸ k(̸ p1− ̸ q−M) ̸ q}(εk)u(p1)

=ū(p2)
{̸

k(̸ p1 ̸ q−M ̸ q−m2
π)
}
(εk)u(p1)

=ū(p2)
{̸

k(− ̸ q ̸ p1 +2p1q−M ̸ q−m2
π)
}
(εk)u(p1)

=ū(p2)
{
−2M ̸ k ̸ q+(2p1.q−m2

π) ̸ k
}

εku(p1)

=ū(p2)
{
−2M ̸ k(̸ k+ ̸ p1− ̸ p2 − (u−M2) ̸ k

}
εku(p1)

=ū(p2)
{
−2M(k2 +M ̸ k− ̸ k ̸ p2)− (u−M2) ̸ k

}
εku(p1)

=ū(p2)
{
−2M(k2 +M ̸ k+ ̸ p2 ̸ k−2kp2)− (u−M2) ̸ k

}
εku(p1)

=ū(p2)
{
−2M(u−M2)−4M2 ̸ k− (u−M2) ̸ k

}
εku(p1)

=ū(p2)
{
−(4M2 +(u−M2))O(A8)−2M(u−M2)O(A7)

}
u(p1)notcompleted (4.95)

Now we will take into account ⟨eρJPF
ρ ⟩pπ+

, and the vector part of ⟨eρJCT
ρ ⟩pπ+

, and the
remaining term from Equation 4.79, and using Equation 4.53:

+
gA√
2 fπ

1
t −m2

π

FPF(k2)ū(p2) 2M[2qε − kε]γ5 u(p1)+
qA√
2 fπ

FV
CT ū(p2) ̸ ε γ5 u(p1)

− gA√
2 fπ

2F1(k2) ū(p2)
qε

qk
̸ qγ5u(p1)

=
gA√
2 fπ

1
t −m2

π

F(k2)ū(p2)

{
2M(2εq− kε)+(t −m2

π)(−
qε

qk
̸ q+ ̸ ε)

}
γ5u(p1)

=
gA√
2 fπ

F(k2)
1

t −m2
π

1
qk

ū(p2)
{

2M(qk)(2q− k)ε +(k2 −2qk)(−qε (̸ k−2M)+(qk) ̸ ε)
}

γ5u(p1)

=
gA√
2 fπ

F(k2)
1

t −m2
π

1
qk

ū(p2)
{

2M(qk)(2q− k)ε +2M(k−2q)k(qε)+(k2 −2qk) [−qε ̸ k+(qk) ̸ ε]
}

γ5u(p1)

=
gA√
2 fπ

ū(p2)

{
− F

qk
O(V3)+

F
t −m2

π

2M
qk

O(V5)

}
u(p1) (4.96)

The last step is ⟨eρJPP
ρ ⟩pπ+

and the axial part of the contact term ⟨eρJCT
ρ ⟩pπ+

, which are
related to Fρ((k−q)2):

1√
2 fπ

Fρ((k−q)2)ū(p2)

[̸
ε − (εk)

̸ k
k2 −mπ

]
u(p1)

=
1√
2 fπ

Fρ((k−q)2)ū(p2)

[
1
M

O(A4)+
1

k2 −mπ

O(A8)

]
u(p1) (4.97)
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Therefore using Equation 4.81- 4.97 and comparing with Equation 4.54, we can extract the
invariant amplitudes of ν p → µ pπ+

V pπ+
1 =

gA√
2 fπ

(
4M

s−M2 F1(k2)+
2µV F2(k2)

M

)
V pπ+

2 =
gA√
2 fπ

1
qk

4M
u−M2 F1(k2)

V pπ+
3 =

gA√
2 fπ

(
4

u−M2 µV F2(k2)

)
V pπ+

4 = − gA√
2 fπ

4
u−M2 µV F2(k2)

V pπ+
5 =

gA√
2 fπ

1
qk

2M
t −mπ

Fπ(k2) (4.98)

Apπ+
1 =

gA√
2 fπ

2M
u−M2 GA(k2)

Apπ+
3 = − gA√

2 fπ

(
2M

u−M2 GA(k2)

)
Apπ+

4 = − gA√
2 fπ

1
M

GA(k2)+
1√

2M fπ

Fρ

(
(k−q)2)

Apπ+
7 = − gA√

2 fπ

2M
m2

π − k2 GA(k2)

Apπ+
8 =

gA√
2 fπ

1
m2

π − k2

(
1+

4M2

u−M2

)
GA(k2)− 1√

2 fπ

1
m2

π − k2 Fρ

(
(k−q)2)

(4.99)

Isospin symmetry (see A) allows us to find V pπ0

k in terms of V pπ+

k and V nπ+

k , and similarly

for Apπ0

k :

V pπ0

k =− 1√
2

[
V pπ+

k −V nπ+

k

]
Apπ0

k =− 1√
2

[
Apπ+

k −Anπ+

k

]
(4.100)

Knowing the invariant amplitudes one can calculate the isobaric amplitudes Fk and Gk, from
Appendix D, and the derivation of helicity amplitudes is straightforward from Equation 3.49
- 3.56 for nonresonant contribution.
Before finishing this section it worth to mention that nonresonant interaction is different in
[9] with what we introduced here, in many aspects. For instance, the nonresonant interaction
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in [9] is based on 3 Born diagrams which are results of linear sigma model with PS coupling.
therefore the transition amplitudes are different than what are given in Equation 4.47. As a
result, the invariant amplitudes should be different.

4.2.2 Neutral Current interactions

Pion can also be produced via NC interactions, accompanied by an outgoing nucleon and a
neutrino. Transition amplitude and lepton current are given in Equation 3.8. The resonance
production amplitudes for NC interactions ( f NC

±3,±1) are given in [7] and also in Appendix G.
One only needs to substitute them in Equation 4.39 for the resonant contribution with proper
isospin coefficients from Table 4.1.
Detailed calculation for nonresonant interactions is given in [10], however, we will briefly
talk about it in this section. Thanks to isospin symmetry, we can relate NC interaction to the
CC interactions we have discussed in the previous chapter.
In terms of hadron current, the differences are isospin coefficients and the fact that the parity
does not break maximally unlike CC interactions. Instead, vector and axial vector currents
multiply to a factor related to the Weinberg angle (sinθW = 0.231).
Neutral hadron current at quark level is:

Jρ

NC =ψ̄uγ
ρ

(
1− 8

3
sinθW − γ5

)
ψu − ψ̄dγ

ρ

(
1− 4

3
sinθW − γ5

)
ψd

−ψ̄sγ
ρ

(
1− 4

3
sinθW − γ5

)
ψs (4.101)

Equation 4.101 can be expressed as:

Jρ

NC =ψ̄qγ
ρ (1−2sinθW − γ5)τ3ψq −4sin2

θW sρ

em,IS − ψ̄sγ
ρ (1− γ5)ψs (4.102)

where ψq =

(
ψu

ψd

)
and τ3 is Pauli matrix given in Appendix A. The isoscalar part (second

term) of the electromagnetic current is:

sρ

em,IS =
1
6

ψ̄qγ
ρ

ψq −
1
3

ψ̄sγ
ρ

ψs. (4.103)
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Isospin symmetry enable us to relate the isovector (first) term of Equation 4.102 to the
charged-current SPP channels (Table A.0.3):

⟨ pπ
0|ψ̄qγ

ρ (1−2sinθW − γ5)τ3ψq|p ⟩= 1√
2

{
(1−2sinθW )

[
⟨ pπ

+| V ρ

CC |p ⟩

+ ⟨ nπ
+| V ρ

CC |n ⟩
]
−
[
⟨ pπ

+| Aρ

CC |p ⟩+ ⟨ nπ
+| Aρ

CC |n ⟩
]}

⟨ nπ
+|ψ̄qγ

ρ (1−2sinθW − γ5)τ3ψq|p ⟩=−
{
(1−2sinθW )

[
⟨ pπ

+| V ρ

CC |p ⟩

−⟨ nπ
+| V ρ

CC |n ⟩
]
−
[
⟨ pπ

+| Aρ

CC |p ⟩−⟨ nπ
+| Aρ

CC |n ⟩
]}

⟨ nπ
0|ψ̄qγ

ρ (1−2sinθW − γ5)τ3ψq|n ⟩= ⟨ pπ
0|ψ̄qγ

ρ (1−2sinθW − γ5)τ3ψq|p ⟩
⟨ pπ

−|ψ̄qγ
ρ (1−2sinθW − γ5)τ3ψq|n ⟩=−⟨ nπ

+|ψ̄qγ
ρ (1−2sinθW − γ5)τ3ψq|p ⟩

(4.104)

As it is explained in [10], isospin symmetry can also relate the isoscalar term to the charged-
current SPP channels like Equation 4.102, with an extra minus for νn → νnπ0 and νn →
ν pπ− channels that is explained in Appendix A, therefore:

⟨ nπ
+|sρ

em,IS |p ⟩= ⟨ pπ
−|sρ

em,IS |n ⟩=
√

2⟨ pπ
0|sρ

em,IS |p ⟩=−
√

2⟨ nπ
0|sρ

em,IS |n ⟩ (4.105)

For isoscalar electromagnetic current, only nucleon pole diagrams can contribute according
to [10]

⟨ pπ
0|sρ

em,IS |p ⟩=− i
gA

2 fπ

ū(p2)

{
̸ qγ5

̸ p1+ ̸ k+M
(p1 + k)2 −M2 + iδ

[
F IS

1 (k2)γρ + iµIS
F IS

2
2M

σ
ρλ kλ

]
+

[
F IS

1 (k2)γρ + iµIS
F IS

2
2M

σ
ρλ kλ

] ̸ p2− ̸ k+M
(p2 − k)2 −M2 + iδ

̸ qγ5

}
u(p1)

(4.106)

where

F IS
1 (k2) =

1
2
[F p

1 (k
2)+Fn

1 (k
2)],

µISF IS
2 (k2) =

1
2
[µpF p

2 (k
2)+µnFn

2 (k
2)], (4.107)

with the Galster parametrization given in Equation 4.50. From Equation 4.105 it is straight-
forward to calculate the isoscalar electromagnet current for other channels.
Isoscalar operator ψ̄sγ

ρ (1− γ5)ψs is sensitive to the strange content of hadrons, with simple



4.3 Resonance Contribution and Nonresonant Background 69

relation between different channels:

⟨ nπ
+|ψ̄sγ

ρ (1− γ5)ψs|p ⟩=⟨ pπ
−|ψ̄sγ

ρ (1− γ5)ψs|n ⟩
=
√

2⟨ pπ
0|ψ̄sγ

ρ (1− γ5)ψs|p ⟩
=−

√
2⟨ nπ

0|ψ̄sγ
ρ (1− γ5)ψs|n ⟩ (4.108)

and again only nucleon pole diagrams can contribute

⟨ pπ
0|ψ̄sγ

ρ (1− γ5)ψs|p ⟩=

− i
gA

2 fπ

ū(p2)

{
̸ qγ5

̸ p1+ ̸ k+M
(p1 + k)2 −M2 + iδ

[
Fs

1 (k
2)γρ + iµs

Fs
2

2M
σ

ρλ kλ −Gs
Aγ

ρ
γ5

]
+

[
Fs

1 (k
2)γρ + iµs

Fs
2

2M
σ

ρλ kλ −Gs
Aγ

ρ
γ5

] ̸ p2− ̸ k+M
(p2 − k)2 −M2 + iδ

̸ qγ5

}
u(p1)

(4.109)

where Fs
1 ,F

s
2 and Gs

A are the strange vector and axial nucleon form factors, and from [10]

Gs
A(k

2) =
gs

(1− k2/(Ms
A)

2)2 , Fs
1 (k

2) = µsFs
2 (k

2) = 0, (4.110)

with gs =−0.15 and Ms
A = MA = 1.05 GeV.

4.3 Resonance Contribution and Nonresonant Background

In chapter 3, we defined the general form of the differential cross-section in terms of
helicity amplitudes, and in this chapter, the helicity amplitudes of resonant and nonresonant
interactions are given. They provide us with everything about neutrino-nucleon single pion
production via resonance excitation and nonresonant interaction, however we need to know
how to add the different helicity amplitudes.
A primary constraint on the pion production amplitudes is Watson theorem, which is derived
by assuming unitarity. The RS model [7] violates Watson theorem because it is not a
unitarized model. As we discussed before in section 4.1, we take into account 17 resonances
from RS model. Helicity amplitudes of a resonance is a complex amplitudes due to a complex
Breit-Wigner amplitudes, but it is unitarized, i.e.

A = |A|eiδ (4.111)
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where A is a multipole part of the amplitudes for definite quantum number that is explained
in subsection 3.2.1.
All resonant and nonresonant multipoles are unitarized individually, but they are not unita-
rized as a model unless you define proper phases to make it unitarized [37]. Therefore RS
model is not unitarized above ∆ region (W > 1.4GeV ).
Now assume you have only one resonance and nonresonant multipoles (AR and AB), with
phase δR and δB:

A = |AB|exp[iδB]+ |AR|exp[i(δR +φ)]. (4.112)

The phase φ should be constrained such that Equation 4.111 is satisfied.

A = |AR|{χ exp[iδB]+ exp[i(δR +φ)]} (4.113)

where χ = |AB|/|AR|. Now we assume δB = δR −δ :

A = |AR|{χ exp[iδB]+ exp[i(δB +δ +φ)]}
= |AR|{χ exp[i(δB −δ )]+ exp[i(δB +φ)]}eiδ

(4.114)

To satisfy Equation 4.111, the curly bracket in Equation 4.114 should be real:

sin(δB +φ) = χ sin(δ −δB)

δB +φ = sin−1 [χ sin(δ −δB)]

φ =−δB + sin−1 [χ sin(δ −δB)] (4.115)

In our case the nonresonant background multipoles are real and δB = 0 and δ = δR, therefore:

φ = sin−1 [χ sin(δR)] (4.116)

In the described model with 17 resonances and nonresonant background, it is not practical to
calculate all phases between multipoles.

4.4 Summary

The theoretical calculation of the proposed model was given in chapter 3 and in this chapter.
The general definition for helicity amplitudes and cross-section derivations was given in
chapter 3. In section 4.1, the helicity amplitudes of the resonances were given by using
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Equation 3.82 and the RS model. In section 4.2 we derived the helicity amplitudes of the
five diagrams introduced in [10] for the nonresonant interaction. We also discussed about the
isospin coefficients for charged and neutral-currents, resonant and nonresonant interactions.
Knowing the cross-section in Equation 3.60, and the helicity amplitudes with proper isospin
coefficients for different channels, one can calculate a full kinematics differential cross-
section for all channels in Equation 3.1 - 3.4, as a function of W, Q2 and θ , φ in the isobaric
frame and neutrino energy (Eν ) in the lab frame. The model proposed in these chapters
has a very suitable format for implementation. One can easily write a program to get the
numerical value of the differential cross-sections in order to compare the model predictions
with available data. This is going to be discussed in the next chapter.
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Table 4.1 Properties of resonances below
2GeV/c2 from [78].

Resonance MR Γ0 χE σD N

P33(1232) 1232 117 1 + 0

P11(1440) 1430 350 0.65 + 2

D13(1520) 1515 115 0.60 - 1

S11(1535) 1535 150 0.45 - 1

P33(1600) 1600 320 0.18 + 2

S31(1620) 1630 140 0.25 + 1

S11(1650) 1655 140 0.70 + 1

D15(1675) 1675 150 0.40 + 1

F15(1680) 1685 130 0.67 + 2

D13(1700) 1700 150 0.12 - 1

D33(1700) 1700 300 0.15 + 1

P11(1710) 1710 100 0.12 - 2

P13(1720) 1720 250 0.11 + 2

F35(1905) 1880 330 0.12 - 2

P31(1910) 1890 280 0.22 - 2

P33(1920) 1920 260 0.12 + 2

F37(1950) 1930 285 0.40 + 2

resonances are identified with isospin (I) and
angular momentum ( j); L2I,2 j(MR), where
MR are old measurements for averaged Breit-
Wigner mass and we kept them for identifi-
cation but the updated mass is also given.
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Table 4.2 Isospin coefficients for RS model CC and NC (anti-)neutrino channels.

ν Channels ν̄ Channels C3/2
Nπ

C1/2
Nπ

ν p → l−pπ+ ν̄n → l+nπ− √
3 0

νn → l−pπ0 ν̄ p → l+nπ0 −
√

2
3

√
1
3

νn → l−nπ+ ν̄ p → l+pπ−
√

1
3

√
2
3

ν p → ν pπ0 ν̄ p → ν̄ pπ0
√

2
3 −

√
1
3

ν p → νnπ+ ν̄ p → ν̄nπ+ −
√

1
3 −

√
2
3

νn → νnπ0 ν̄n → ν̄nπ0
√

2
3

√
1
3

νn → ν pπ− ν̄n → ν̄ pπ−
√

1
3 −

√
2
3

Table 4.3 Symmetry relation among standard he-
licity amplitudes

Vector Axial vector

F− 1
2− 1

2
=−F1

2
1
2

F− 1
2− 3

2
= e−2iφ F1

2
3
2

F1
2− 1

2
= e−2iφ F− 1

2
1
2

F1
2− 3

2
=−e−4iφ F− 1

2
3
2

G− 1
2− 1

2
= G 1

2
1
2

G− 1
2− 3

2
=−e−2iφ G 1

2
3
2

G 1
2− 1

2
=−e−2iφ G− 1

2
1
2

G− 1
2

3
2
= e−4iφ G− 1

2
3
2

F(±)0
− 1

2− 1
2
=−F(±)0

1
2

1
2

F(±)0
− 1

2
1
2

= e2iφ F(±)0
1
2− 1

2

G(±)0
− 1

2− 1
2
= G(±)0

1
2

1
2

G(±)0
− 1

2
1
2
=−e2iφ G(±)0

1
2− 1

2

Table 4.4 Symmetry relations between Helicity Am-
plitudes F̃λ2λ1(θ ,φ), G̃λ2λ1(θ ,φ)

Vector Axial vector

F̃eL
1
2

1
2
= e−4iφ F̃eR

− 1
2− 1

2

F̃eL
− 1

2
1
2
=−e−2iφ F̃eR

1
2− 1

2

F̃eL
1
2− 1

2
=−e−2iφ F̃eR

− 1
2

1
2

F̃eL
− 1

2− 1
2
= F̃eR

1
2

1
2

G̃eL
1
2

1
2
=−e−4iφ G̃eR

− 1
2− 1

2

G̃eL
− 1

2
1
2
= e−2iφ G̃eR

1
2− 1

2

G̃eL
1
2− 1

2
= e−2iφ G̃eR

− 1
2

1
2

G̃eL
− 1

2− 1
2
=−G̃eR

1
2

1
2

F̃e−
1
2

1
2

=−e−2iφ F̃e−
− 1

2 f rac12

F̃e−
− 1

2
1
2
= F̃e−

1
2− 1

2

G̃e−
1
2

1
2
= e−2iφ G̃e−

− 1
2− 1

2

G̃e−
− 1

2
1
2
=−G̃e−

1
2− 1

2
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Table 4.5 Isospin coefficients for neutrino and anti-neutrino channels.

CC Channels CNP CCNP CPF CCT CPP

ν p → l−pπ+ 0 1 1 1 1

νn → l−pπ0 1√
2

− 1√
2

−
√

2 −
√

2 −
√

2

νn → l−nπ+ 1 0 −1 −1 −1

ν̄n → l+nπ− 0 1 1 1 1

ν̄ p → l+nπ0 − 1√
2

1√
2

√
2

√
2

√
2

ν̄ p → l+pπ− 1 0 −1 −1 −1



Chapter 5

Model predictions for free nucleon and
Data comparisons

The model described in the previous chapters has full kinematics description (including pion
angles) of the final state particles for charged and neutral-current (anti-)neutrino-nucleon
interactions. It has been calculated in the helicity basis which is very suitable for implemen-
tation, and very fast.
The model has been implemented as Cross-Section Calculation (CSC) code using C++ by
the author of this thesis. The CSC code is capable of returning the differential cross-section
(given in Equation 3.60), by knowing W, Q2 and θ , φ in the isobaric frame and energy (Eν )
in the lab frame. Differential (total) cross-section can be calculated as a function of any of the
variable(s) 1. It includes all (anti-)neutrino charged and neutral-current channels illustrated
in Equation 3.1 - 3.4, for free nucleon.
The resonance part of the model (which is the RS model) includes resonances up to
MR = 2GeV (see Table 4.1), therefore it is valid up to W = 2 GeV. For nonresonant
interactions and as we mentioned before the model is based on the chiral symmetry and it
is not reliable at high energy and high W. A practical solution to have a complete model
with resonant and nonresonant interactions, is to multiply a form-factor to the virtual pion
propagator of PIF diagram in Figure 4.1, in order to reduce the nonresonant contributions,
smoothly, in the 1.4 GeV ≤W ≤ 1.6 GeV region.

Fvir(W ) =


1 if W < 1.4 GeV

−23.31W 2 +64.92W −44.2 if 1.4 GeV ≤W ≤ 1.6 GeV

0 if W > 1.6 GeV

(5.1)

1The code for integrating by part was written by Dr. Zmuda from Wroclaw University.
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The conservation of vector current (CVC) requires to include this form factor in several
other amplitudes (see Appendix H), therefore nonresonant interaction will have no effect at
W ≥ 1.6 GeV.
The model for resonant interaction contains form-factors. the vector form factors can be
related to the electromagnetic form factors measured in electron-nucleon elastic scattering
experiments. The axial form-factor should be extracted from neutrino-nucleon data. There-
fore we firs need to fit the resonance’s axial form-factor (Equation 4.45) with two adjustable
parameters MA and CA

5 (0) to the neutrino data. This is the first job we should do before any
data comparison.
Then we will discuss about the resonance’s signs (σD introduced in subsection 4.1.2) in
subsection 5.2.2.
For the rest of this chapter, we show the comparison between model prediction and all avail-
able measurements for neutrino Energy (Eν ), invariant mass W and pion angular distribution
(θ ,φ ) on free nucleon.

5.1 Bubble chamber experiments

Several experiments have studied single pion production interactions with neutrino and
anti-neutrino beam at various incident energies. Almost all of them measure the total cross-
section, and some of them also measure the differential cross-section in terms of Q2, W , θ

and φ or they only report the number of events distributions. Here we give a brief summary
of the bubble chamber experiments which we will use their measurements for the model
comparison.

• ANL The experiment was performed at the Zero Gradient Synchrotron using the
wide-band neutrino beam incident on the Argonne 12 ft (3.6 m) bubble chamber filled
with hydrogen and deuterium. The neutrino energy spectrum peaks at 0.5 GeV and has
a tail extending to 6 GeV. The chamber has been in operation for physics runs from
September 1970 to October 1979.
Data we are using in this work is from 1115 selected evens published in [38] for three
CC neutrino channels (Equation 3.1). ANL also has selected a few events for NC
exclusive channels and the data in this work is from [43, 44]. The measurements have
been done with 47 and 25 signal events for ν pπ− and νnπ+ final states respectively.

• BNL The experiment was carried out at Brookhaven National Laboratory using the
7 ft (∼ 2.1 m) bubble chamber filled with deuterium and the Alternating Gradient
Synchrotron (AGS) wide-band neutrino beam peaked at 1.2 GeV and extended up to
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Fig. 5.1 The published (left) and extracted (right) ANL [38] and BNL [39] data are compared
with other measurements of ν p → µ pπ+ on hydrogen or deuterium targets. Pictures are
taken from [53]

15 GeV.
Data in this work is from [39] for three CC neutrino channels. The measurement has
been done on 1803 µ−ppi+, 896 µ−pπ0 and 732 µ−nπ+ events where they have
taken from 1974 to 1984.

There is a discrepancy between ANL [38] and BNL[39] bubble chamber cross-section
measurements at the same range of energy. This was first studied in Reference [52]. In
Reference [54] it is shown that there is a good agreement for the ratio of number of events in
CC1pi+ and CCQE, between ANL and BNL. This suggests that the cause of the discrepancy
is the flux prediction. A simple reanalysis of the ANL and BNL data which removed the flux
uncertainty by taking ratios with the well understood CCQE channel found good agreement
between ANL and BNL data. The published and reanalyzed data are shown in Figure 5.1.

• BEBC Big European Bubble Chamber (BEBC) was a cylinder with 32 m3 volume
filled with deuterium during operation. Data has been obtained duing 1977− 1984
in the wide band neutrino and anti-neutrino beam at Cern Super Proton Synchrotron
(SPS). Almost two-thirds of obtained data were exposed to the wide band anti-neutrino
beam and the rest of running with the neutrino beam. In total, 27575 ν and 16896 ν̄

events were obtained with the two beam settings. Data we are using in this work are
the measurements for five CC (anti-)neutrino channels from [40] and [49]:
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νµ + p → µ pπ+ ,

νµ +n → µ pπ0 ,

νµ +n → µnπ+ ,

ν̄µ +n → µ+nπ−

ν̄µ + p → µ+pπ−

with an invariant mass W < 2 GeV cut in the hadron’s final states, which is perfect for
the model comparison, because the model is valid in this region.

• FNAL Fermilab 15 ft (∼ 4.5 m)bBubble Chamber filled with hydrogen, exposed to a
wide-band horn-focused neutrino beam. The neutrino event energy spectrum peaks at
about 15 GeV with 90% of the spectrum below 100 GeV.
The FNAL data [41] on a hydrogen target is selected for ν p → µ pπ+ channel with
an invariant mass cut of W < 1.4 GeV, in order to isolate the ∆ contribution to the
cross-section. The first run started in 1972 and the data from reference [41] is published
in 1978.

• Gargamelle big heavy liquid bubble chamber Gargamelle (8 m3 of visible and
∼ 3m3 of fiducial volume) was filled with propane and a small admixture of heavy
freon CF3Br and exposed to the CERN PS neutrino and antineutrino beam (peaked at
Eν ∼ 1.5 GeV). It started taking data from 1971, and the analysed data we are using
here was published in 1978.
Propane is a heavy target but it is possible to do hydrogen event study with it, and the
separation of neutron-proton can be achieved for single pion production. The method
is to fit events to the hydrogen hypothesis (the energy-momentum conservation). This
method had been tested on a sample of reactions on bound nucleons selected by a
nuclear fit, and only a few events pass through the hydrogen fit.
Data we are using is this work is the total cross-section as a function of energy for
two CC anti-neutrino channels from reference [48], and NC channels from reference
[46]. The total cross-sections are deduced from the corrected number of events
(246±17 for µ+π−p and 227±17 for µ+π−n) taking into account the percentage of
neutrons and protons in the liquid (45% and 55%, respectively). The data are with
(W < 1.4) and without an invariant mass cut, however, due to the low energy, we are
allowed to draw the data without the invariant mass cut against the model prediction
with W < 2GeV cut.
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5.2 Results for Free Nucleon

In this section, the model predictions will be compared with all available bubble chamber
data, but first, we should fit the two free parameters MA and CA

5 (0) in the resonance’s axial
form-factor to the available data in order to have definitive predictions from the model. Then
we will discuss the resonance decay’s signs that have been introduced in subsection 4.1.2.

5.2.1 Fitting MA and C5
A

The axial form-factor of resonance interaction with two adjustable parameters (MA and C5
A)

should be fitted to neutrino data. The dipole form-factor (Equation 4.45) is a function of Q2,
and the parameters affect both the absolute value of the cross-section and the shape of the Q2

distribution. Therefore we need to fit the adjustable parameters to dσ/dQ2 measurements.
ANL experiment [38] provided this measurement for νµ p → µ−pπ+ with the selections
0.5 GeV < E < 6 GeV and W < 1.4 GeV. Furthermore ANL data shows small correction
for the flux as it is shown in [54]. This is why the Q2-differential cross-section measured by
ANL experiment is chosen for the fit.2

To fit the axial form-factor’s parameters flux3-averaged prediction of dσ/dQ2 is calculated
with the same cut for ANL measurement. The best value of the free parameters can be found
by minimizing the χ2 function similar to Reference [52]:

χ
2(MA,CA

5 ) =
n

∑
i=1


(

dσ

dQ2

)exp

i
−
(

dσ

dQ2 (MA,CA
5 )
)th

i

∆

(
dσ

dQ2

)
i

 (5.2)

where
(

dσ

dQ2

)exp

i
is the measured differential cross-section for single pion production (resonant

and nonresonant) in the i-th bin with the uncertainty ∆

(
dσ

dQ2

)
i
, and

(
dσ

dQ2 (MA,CA
5 )
)th

i
is

the flux-averaged differential cross-section of the full model including the resonant and
nonresonant interaction, in the i-th bin.
The best fit parameters are:

MA = 0.733±0.068 GeV , CA
5 = 0.993±0.101 GeV (5.3)

and the correlation matrix (Table 5.1) shows that parameters are strongly anticorrelated.
Figure 5.2 shows the result of the fit with ANL data within 1σ error.

2For example BNL experiment [39] only provides the event distribution of Q2.
3From Reference [50].
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Table 5.1 Correlation Matrix

MA CA
5

MA 1 −0.858
C0

A −0.858 1

Fig. 5.2 Differential cross-section
as a function of Q2. The curve is
the model’s prediction for dσ

dQ2 av-
eraged over ANL flux and for the
best fit values of the free parame-
ters, and the shaded area accounts
for the variation of the results when
MA changes within its error inter-
val. The model prediction include
a W < 1.4GeV cut in the final pion-
nucleon invariant mass.

Changing MA has its main effects on the shape of dσ/dQ2. To show this, the model
predictions for different MA has been shown in Figure 5.3.
The best values for MA and C5

A(0) parameters obtained from the fit in the ∆ region (and for
one channel) will be fixed as constant values from now on to do all predictions for CC and
NC (anti-)neutrino SPP channels in this work.
We can turn off the nonresonant background in the MK-model. The best fit parameters are:

MA = 0.776±0.056 GeV , CA
5 = 1.125±0.085 GeV (5.4)

Fig. 5.3 Differential cross-section
as a function of Q2. Curves are the
model’s prediction for dσ

dQ2 averaged
over ANL flux and for the differ-
ent values of MA. Solid-red is for
the best value, and the dotted-blue
and dashed-black are for different
MA while they are normalized to the
solid-red curve to show the changes
in shape. The model prediction in-
clude a W < 1.4GeV cut in the final
pion-nucleon invariant mass. ]2 [(GeV/c)2Q
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and the correlation matrix (Table 5.2) also shows that parameters are strongly anticorrelated.
The minimum of reduced χ2 is 0.199 which is very similar to what we got with nonresonant

Table 5.2 Correlation Matrix

MA CA
5

MA 1 −0.829
CA

5 −0.849 1

contribution.
In reference [17], the RS model with GS form-factor and with no background is taking into
account and the fitting result is consistent with the best fit value in this work. If we use the
RS form-factors with one parameter, MA (which is used in the RS model [7] and the Rein
model [9]), we get a similar result as Reference [9] with full MK-model, i.e. MA = 1 GeV.
Fitting results with more data sets and discussions can be found in I.

5.2.2 Resonance’s Signs from Bubble Chambers Data

As discussed in subsection 4.1.2 about the decay amplitude of resonant interactions, it is
replaced by Breit-Wigner factor (multiplied by branching ratio) taken from experimental
data, and isospin coefficients and the resonance’s sign (σD in Table 4.1), as it is displayed in
Equation 4.20. In the RS model, σD is taken from the numerical value of decay amplitude
from FKR model [5].
In the same way, as the RS model defines resonance’s shape by Breit-Wigner factor to
best describe the data, we can also choose the sign to get the best description of data. The
procedure is to use the experimental data sensitive to the interference terms to extract signs
related to the individual resonances and nonresonant helicity amplitudes. Such data exists
from BEBC experiment [40] where decay angular distributions of the nucleon-pion system
are investigated by means of a spherical harmonics expansion. The expansion in terms of
spherical harmonics with coefficients as a function of Nπ invariant mass W are:

dσ

dWdΩ
= aν ,ν̄

00 (W )Y 0
0 (Ω)+aν ,ν̄

10 (W )Y 0
1 (Ω)+aν ,ν̄

20 (W )Y 0
2 (Ω)+ ...

+ aν ,ν̄
11 (W )ReY 1

1 (Ω)+aν ,ν̄
21 (W )ReY 1

2 (Ω)+aν ,ν̄
22 (W )ReY 2

2 (Ω)+ ...

+ bν ,ν̄
11 (W ) ImY 1

1 (Ω)+bν ,ν̄
21 (W ) ImY 1

2 (Ω)+bν ,ν̄
22 (W ) ImY 2

2 (Ω)+ ... (5.5)

where Y m
l (θ ,φ) are spherical harmonics functions. Therefore the coefficients are:

aν ,ν̄
i j (W ) =

∫
dΩ

dσ

dWdΩ
ReY j

i (Ω), bν ,ν̄
i j (W ) =

∫
dΩ

dσ

dWdΩ
ImY j

i (Ω) (5.6)
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where aν ,ν̄
00 (W ) is used for the normalization, and the measured quantities are:

âi j = ai j/a00 , b̂i j = bi j/a00 (5.7)

On the other hand from Equation 3.64:

dσν ,ν̄

dWdΩ
= T ν ,ν̄

1 (W,θ)+ cosφT ν ,ν̄
2 (W,θ)+ sinφT ν ,ν̄

3 (W,θ)

+ cos2φT ν ,ν̄
4 (W,θ)+ sin2φT ν ,ν̄

5 (W,θ). (5.8)

It is easy to do the integration over φ in Equation 5.6, using Equation 5.8:

aν ,ν̄
l0 = 2π

√
2l +1

4π

∫
d cosθT ν ,ν̄

1 (W,θ)Pl(cosθ)

aν ,ν̄
l1 = π

√
(2l +1)

(l −1)!
(l +1)!

∫
d cosθT ν ,ν̄

2 (W,θ)P1
l (cosθ) (For l > 0)

bν ,ν̄
l1 = π

√
(2l +1)

(l −1)!
(l +1)!

∫
d cosθT ν ,ν̄

3 (W,θ)P1
l (cosθ) For l > 0 (5.9)

where Pl(cosθ) are Legendre functions, and Pm
l (cosθ) are associated Legendre functions.

These coefficients (which is called the averaged value of spherical harmonics due to Equa-
tion 5.6) are measured in terms of W which allows to distinguish individual resonance’s
regions approximately. But unfortunately measurement is for the ratio of the coefficients in
Equation 5.7, that make it more difficult to guess about resonance’s regions.
For a00 (which is actually dσ/dW multiplied to a constant), one can look at specific W
region and conclude about the signs, although regions of resonances are not separated due
to the interfering resonances with same (l, j) numbers, and interference effects between
resonant and nonresonant interactions. For other coefficients it is more difficult because
the cross-section is additionally multiplied to a Legendre function which will change the
interference terms.
Figure 5.4 shows the averaged value of spherical harmonics (Equation 5.7) for ν̄ p→ µ+pπ−

channel measured by BEBC experiment. The model prediction with resonance’s signs pro-
posed in RS model is compared with data, and it shows disagreement for the leading
coefficients especially at high W . We change the signs to obtain the best description of the
data. We can repeat the same procedure for all resonances and extract the sign for different
resonances, as they are given in Table 5.3. The result shows significantly better agreement
with data for the extracted signs as it is displayed in Figure 5.4.
Since the main difference appears in the leading coefficients we will present precise cal-
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Table 5.3 Resonance signs from Rein-Sehgal (RS) model [7] and new signs proposed in this
work.

Resonance MR Γ0 χE RS− signs MK − signs

P33(1232) 1232 117 1 + +

P11(1440) 1430 350 0.65 + -

D13(1520) 1515 115 0.60 - -

S11(1535) 1535 150 0.45 - -

P33(1600) 1600 320 0.18 + +

S31(1620) 1630 140 0.25 + -

S11(1650) 1655 140 0.70 + +

D15(1675) 1675 150 0.40 + -

F15(1680) 1685 130 0.67 + +

D13(1700) 1700 150 0.12 - -

D33(1700) 1700 300 0.15 + +

P11(1710) 1710 100 0.12 - -

P13(1720) 1720 250 0.11 + -

F35(1905) 1880 330 0.12 - +

P31(1910) 1890 280 0.22 - -

P33(1920) 1920 260 0.12 + -

F37(1950) 1930 285 0.40 + +
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Fig. 5.4 Averaged values of the spherical harmonics for ν̄ p → µ+pπ− reaction from [40].
Curves show the model’s prediction for RS-signs (dashed-blue) and the new extracted signs
(solid-red). ⟨Y j

i ⟩= âi j.
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culation for ⟨Y 0
1 ⟩â10, assuming the MK-model has only ∆ resonance, i.e. we ignore other

resonances and nonresonant interaction. Therefore the angular part of the helicity amplitudes
of

T1(W,θ) =
∫

dk2 G2
F

2
1

(2π)4
|q|
4

−k2

(kL)2 ∑
λ2,λ1

{
|CL|2|F̃eL

λ2λ1
(θ)− G̃eL

λ2λ1
(θ)|2 + |CR|2|F̃eR

λ2λ1
(θ)− G̃eR

λ2λ1
(θ)|2

+ |C−|2 |F̃e−
λ2λ1

(θ)− G̃e−
λ2λ1

(θ)|2 + |C+|2 |F̃e+
λ2λ1

(θ)− G̃e+
λ2λ1

(θ)|2
}

(5.10)

are d3/2
λ µ

, and for a specific helicity λ = 1/2 and µ = 1/2

d3/2
1/2,1/2 =

1
2

cosθ/2(3cosθ −1), (5.11)

we have:

a10

a00
=

∫ 1
−1 d cosθ cos2(θ/2)[3cosθ −1]2P1(cosθ)∫ 1

−1 d cosθ cos2(θ/2)[3cosθ −1]2

=

∫ 1
−1 d cosθ [1+ cosθ ][3cosθ −1]2 cosθ∫ 1

−1 d cosθ [1+ cosθ ][3cosθ −1]2
(5.12)

which is a negligible number (∼ 0.03). This is the same for all single resonances and with
different helicities, therefore, the interference effect is significantly visible in â10 in absence
of resonances. Same calculation and conclusion can be made for â20 as well.
To do more investigation we also show the model predictions for individual coefficients
a00, a10 and a20 in Figure 5.5, rather than the ratio that was presented in top plots of
Figure 5.4.
Plots in the right side of Figure 5.5 show the full model predictions (i.e resonant, nonresonant
contribution with interference effects) with RS and MK signs. The top plot shows a00 where
the significant change appears in the ∆ region due to the interference between resonant and
nonresonant interactions. This is shown on the top-right plot where the different ingredients
are shown separately. This plot has few messages:

• changing resonance’s signs will change the resonance contribution, only a little bit, due
to the interference between resonances at higher W where the MK-signs are different
for P33(1920), F35(1905) and P13(1720).
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• At low W , changing the sign of P11(1440)4 reflects the contribution of interference
with the nonresonant background. Figure 5.6 shows the separate contributions for
individual resonance (with different sings and ∆ (P33(1232)) resonance) and nonreso-
nant background, where the top plots shows the interference contributions is the main
reason for a00 modification at low W due to the superposition of ∆ and P11(1440)
resonances.

• The nonresonant background is obviously unaffected by changing the resonance’s signs,
however, the contribution is significant (especially for this channel) up to W < 1.6 GeV
region.

• The interference between resonant and nonresonant for both RS and MK signs show
significant changes in W < 1.6 GeV region, and this is the main reason for the modifi-
cation in the ∆ region of a00 in the top right plot.

The middle plots of Figure 5.5 show the model predictions for a10 with RS and MK signs.
The resonance contribution is changing in W > 1.2 GeV because all resonance can interfere
with each other after multiplying the Legendre function P1(cosθ). On the other hand, the
interference (between resonance and nonresonant interaction) effect has a large contribution
in W < 1.6 GeV region. They are significantly different (between RS and MK signs)
everywhere, but its effect in W < 1.2 GeV region is the main reason to see different result
for a10 (right plot) in this region.
The ratio of a10/a00 between top-right and middle-right plots of Figure 5.5 is consistent with
the top-right plot of Figure 5.4 where the different resonance’s signs cause significant change
in the model predictions.
Similar arguments can be made for a20 (bottom-right plot of Figure 5.5) where the main
change for higher W comes from the interference between resonances and for low W (W <

1.6 GeV) is due to the interference between all multipoles. The ratio of a20/a00, between
top-right and bottom-right plots of Figure 5.5, is consistent with the top-left plot of Figure 5.4
where the different resonance’s signs cause the model predictions with RS and MK signs
modify significantly.
From now on, "RS-signs" refers to resonance’s signs proposed in RS model and presented in

the 5th column of the Table 5.3, and "MK-signs" refers to the new extracted signs proposed
in this work (6th column of Table 5.3).

4This is called Roper resonance. As it is discussed in [7, 9], the RS-sign sign for Roper resonance is different
with the sign as required by photoproduction. Therefore the extracted MK-sign is consistent with the sign of
the photoproduction amplitude.
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Fig. 5.5 The model predictions for leading coefficients in Equation 5.6, i.e. a00, a10 and
a20. Right plots are the full model with MK (solid-red) and RS (dashed-blue) signs. In left
plots, different ingredients of the model (i.e. resonances, nonresonant background and the
interference between them) are shown separately.
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Fig. 5.6 Averaged values of the spherical harmonics for ν̄ p → µ+pπ− reaction from [40].
Curves show the model’s prediction for RS-signs (dashed-blue) and the new extracted signs
(solid-red)
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Fig. 5.7 Total cross-section for CC neutrino channels with RS-signs (dashed blue), and with
MK-signs (solid red). Reanalysed ANL and BNL data are from [54, 55].

5.2.3 Total cross-section

Several bubble-chamber experiments have published their measurements for total cross-
section as a function of neutrino energy. ANL [38] and BNL [39] experiments have made
the measurement with the low energy neutrino beam, and they have been reanalyzed later
(see section 5.1). Model predictions for CC neutrino channels (Equation 3.2) for both
RS-signs and MK-signs are compared with reanalysed data from [54, 55] in Figure 5.7.
Changing resonance’s signs has a visible effect in νn → µnπ+ channel due to the significant
contribution from P11(1440) resonance.
Now we look at CC antineutrino data for two channels ν̄ p→ µ+pπ− and ν̄n→ µ+nπ−. For

the BEBC data [40] on deuterium target and Gargamelle data [48] on propane target the total
cross-section as a function of neutrino energy is published. The comparison between data
and the model with an invariant mass cut W < 2 GeV is shown on Figure 5.8. Gargamelle
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Fig. 5.8 Total cross-section for two channels ν̄ p → µ+pπ− (left) and ν̄n → µ+nπ− (right),
as a function of neutrino energy. Data are from BEBC [40] and Gargamelle [49], and
curves are integrated cross-section for the model with an invariant mass cut W < 2 GeV for
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Fig. 5.9 Integrated cross-section
as a function of neutrino energy
for νn → ν pπ− channel. The
model has an invariant mass cut
W ≤ GeV2 for RS-signs (dashed
blue) and MK-signs (solid red). E(GeV)
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data is normalized to the cross-section on free nucleon [49] using the relation:

σpropane(nπ
−) = fnσn(nπ

−),

σpropane(Nπ
−) = fnσn(nπ

−)+ fpσp(pπ
−), (5.13)

where fp = 0.55 and fn = 0.45 are derived from number of protons and neutrons in the target
material [49].
There are few available bubble-chamber data for NC single pion production from ANL on

deuterium target and Gargamelle on propane. For νn → ν pπ− channel, reanalyzed ANL
data (based on [55]), Gargamelle data and the model prediction with both RS-signs and
MK-signs are shown in Figure 5.9.
There are also few measurements for other NC neutrino and antineutrino channels (Equa-

tion 3.3, 3.4), by Gargamelle [46] and Auchen-Padova spark chamber [47]. All available
data and the model prediction with RS-signs and MK-signs are shown in Figure 5.10.
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Fig. 5.10 NC (anti)neutrino channels for single pion production. data are from [45] and [47],
and curves are model prediction with invariant mass cut W < 2 GeV for RS resonance’s
signs (dashed blue) and the MK-sign (solid red).

The comparisons between data and model for total differential cross-section as a function of
energy show very good agreements for different CC and NC (anti-)neutrino channels in this
section.

5.2.4 W distribution

The W distribution provides us information about individual resonance contributions. For
example ∆ (P33(1232)) with mass MR = 1232 MeV and width Γ0 = 117 MeV has a clear
bump in 1115 MeV ≤W ≤ 1349 MeV region.
In Figure 5.11, we present the distribution of W events for five CC channels (Equation 3.1,3.2)
from exposures of BEBC to (anti-)neutrino beam. High neutrino energy in this experiment
allowed us to see a clear pattern of resonances. To do the shape comparison we need to
calculate the BEBC’s flux5 averaged dσ/dW , and normalize it to the area. Both predictions
with RS-signs and MK-signs are shown in Figure 5.11. To show the effects of background
contribution we also show the model prediction without the background and with RS-signs
(i.e. the RS-model with GS form-factors) for parameters defined in Equation 5.4.
It is apparent that ν p → µ pπ+ and ν̄n → µ+nπ− channels (with isospin 3/2 resonances)
are dominated by ∆(1232) resonance production. Other channels are a combination of

5From Reference [49]
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both isospin 1/2 and 3/2 resonances and the isospin coefficients are given in Table 4.2.
In νn → µnπ+, νn → µ pπ0 and ν̄ p → µ+pπ− channels, the resonances with isospin 1/2
can also contribute. These resonances contribute significantly around W = 1500 MeV and
W = 1700 MeV as it is clear in the Figure 5.11.
Different resonance’s signs change the shape only a little bit. but the effect of nonresonant
background is significant especially for channels with isospin 1/2 resonances.
Figure 5.12 shows the event distribution for W that measured by ANL experiment [38]. The

flux averaged dσ/dW predicted by the full model with MK-signs and RS-signs are shown in
this figure. To show the effect of the nonresonant background, the model prediction (with
RS-signs) without background is also shown in Figure 5.12. This is actually the RS-model
with GS form-factor and fitted parameters from Equation 5.4.

5.3 Model and NEUT comparison with bubble chamber
data

In this section we compare the MK-model and NEUT [56](the primary neutrino interaction
generator used by T2K experiment), with the bubble chamber data for single pion production.
The model introduced in this work with all fitted parameters and MK-signs is called MK-
model (refers to the author) from now on. The single pion production model in NEUT
5.3.6 is the Rein-Sehgal model with the isospin 1/2 background terms with an adjustable
coefficient defined in the original paper [7] and it is called ISO BKG parameter in NEUT.
The Form-factors are the same in both models (from reference [17]), with two adjustable
parameters (MRES

A and C5A). All three parameters in NEUT 5.3.6 are fitted to ANL and
BNL data for CC neutrino channels. They are MRES

A = 1.07 GeV,C5A = 0.96 GeV and ISO
BKG=0.96 GeV.
First we start with the total cross-section of CC neutrino channels which is shown Figure 5.13.
For this channels, NEUT has good agreements with all ANL and BNL data because the three
parameters are fitted to this particular data.
Reanalyzed ANL and BNL data for ν p → µ pπ+ channel (shown in Figure 5.13a) is for low

energy, however data from BEBC [40] and FNAL [41] are also included for comparisons at
higher energies in Figure 5.14. The model prediction with MK-signs6 and an invariant mass
cut W < 2 GeV is also shown for comparison.
The discrepancy between NEUT and model appears for anti-neutrino data as it is shown

in Figure 5.15. This discrepancy will also appears in the next chapter when we compare

6the model predicts same result for both RS and MK signs as it is shown in Figure 5.7a.
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Fig. 5.11 W-distribution for different neutrino and antineutrino CC channels from [40].
Curves are the model prediction (normalized to data) for RS-signs (dashed blue), and MK-
signs (solid red)
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Fig. 5.12 W-distribution for different neutrino CC channels from [38]. Curves are the model
prediction (normalized to data) for RS-signs (dotted blue), and MK-signs (solid red). The
dashed green curve is the model without background with RS-signs (RS model with GS
form-factors).
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Fig. 5.14 Cross-section for ν p → µ pπ+ channel from reanalysed ANL and BNL data for
low energy and BEBC [40, 49] and FNAL [41] for high neutrino energy. Both Model and
data have an invariant mass cut W < 2 GeV, except ANL and BNL data that has no cut on
the event selection.

NEUT 5.3.6 (with the RS model) and NEUT with the MK-model. The main reason for the
discrepancy is due to the background and its interference with resonance contribution in the
MK-model while the RS-model treat differently with nonresonant background and has no
interference effects.
The comparison between NEUT5.3.6, the MK-model and bubble chambers data for neutral

current channels are shown in Figure 5.16 and 5.17. The discrepancy between NEUT5.3.6
and MK-model is not negligible and same discrepancy will be visible also in the next chapter.
The reason is due to the background effects and because the parameters are already fitted to
the CC neutrino channels.
Pion momentum is a direct observable, unlike W and Q2 that have to be constructed from

final state particles. Therefore it is very important to check consistency of model prediction
with data.
ANL has published pion momentum distribution in the lab frame for two CC channels
νµ + p → µ pπ+ and νµn → µnπ+ in [44]. To compare the model prediction in the lab frame
one needs to generate events in the isobaric frame and boost it to the lab frame. Figure 5.18
shows the comparison between ANL data and the model prediction for two CC channels.
The NEUT5.3.6 prediction is also shown in Figure 5.18 for comparison. The MK-model has
an obviously better agreement with data.
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Fig. 5.15 Total cross-section for two channels ν̄ p → µ+pπ− (left) and ν̄n → µ+nπ− (right),
as a function of neutrino energy. Data are from BEBC [40] and Gargamelle [49]. Curves are
total cross-section predicted by MK-model (solid-red) and RS-model (dashed-blue) with an
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Fig. 5.17 NC (anti-)neutrino channels for single pion production. data are from [45] and [47],
and curves are model with MK-sign (solid red) and NEUT (dashed blue) prediction with
invariant mass cut W < 2 GeV.
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(solid-red) and NEUT5.3.6 (dashed-blue). Plots are made with NUISANCE [84]. The
degrees of freedom is 20(10) for left(right) plot.

5.4 Angular distribution

Polar (θ ) and azimuthal (φ ) angles are shown in the isobaric or Nπ rest frame in Figure 3.3.
The θ -distribution of individual resonance is symmetric in the Nπ rest frame7, therefore
any modification from the symmetric pattern is cased by the interference effects between
resonant and nonresonant interactions. θ -distribution for ν p → µ pπ+ channel has been
measured by ANL [38] and BNL [39] experiments, The data is compared with the flux
averaged differential cross-section normalized to data in Figure 5.19.
To show the effects of nonresonant interactions as well as its interference with resonances

we compare the full model in this work (resonant and nonresonant) and RS-model (only res-
onance) in Figure 5.20 for three CC channels. We also include the symmetric ∆ contribution
for comparison. Curves are differential cross-section averaged over T2K near detector’s flux
for different models as described before. To show the effect of resonance signs we also show
same comparisons with the RS-signs in Figure 5.21.
It is apparent from Figure 5.20, that the nonresonance interference has a significant effect

on θ distribution (compare solid-red curve with blue-dotted curves), and the interference
between resonances has also non-negligible effects especially on channels with isospin 1/2.
For ν p → ν pπ+ channel, only resonances with isospin 3/2 can contribute and ∆ is dominant,
therefore interference effects are not significant.
In terms of pion angles, neutrino generators like NEUT [56] only have contribution for
∆ resonance, and missing all the other resonances and their interferences, as well as the
nonresonance effects. Therefore we also include the RS-model only for ∆ resonance in
Figure 5.20 to show the comparison between the full model and what is currently available
in the generator.

7See the symmetry property of resonance helicity amplitudes at the end of subsection 4.1.2.
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Fig. 5.20 The differential cross-section averaged over T2K flux in terms of the polar angle for
MK-signs. The blue dotted curve shows the RS model, i.e. all resonances (up to W = 2GeV )
and their interference, while green (dashed) curve is only for the dominant ∆ resonance. Red
(solid) curve shows the full model.
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Fig. 5.21 The differential cross-section averaged over T2K flux in terms of the polar angle for
RS-signs. The blue dotted curve shows the RS model, i.e. all resonances (up to W = 2GeV )
and their interference, while the Green (dashed) curve is only for the dominant ∆ resonance.
The Red (solid) curve shows the full model.
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Fig. 5.22 ANL and BNL distribution of events in the pion azimuthal angle in πN rest
frame with W < 1.4GeV for µ−pπ+ final state. Curves are flux-averaged, area-normalized
prediction of the model for dσ/dφ .

The azimuthal angle (φ ) in the plane perpendicular to the momentum transfer (see Figure 3.3)
is also sensitive to the interference effects like polar angle, but it is also a good observable
to extract form-factors. For the RS-model and resonant interactions there are two different
available form-factors on the market i.e. the dipole (RS) form-factors from the original RS
model [7], and the form-factors introduced by Graczyk and Sobczyk (GS) [17], and the latter
are used in this work.
Figure 5.22 shows different distributions between RS-model and the model proposed in
this work, with different form-factors. The model predictions as a function of φ differential
cross-section are normalized to ANL [38] and BNL [39] data in Figure 5.22.
From Figure 5.22 we can conclude:

• the nonresonant interference term has a significant effect on the φ distribution. This is
visible when comparing two (solid and dashed) red curves for the full model in this
work and RS model only for resonances.

• The different form-factor will change the φ distribution significantly which is visible
by comparing pairs of red and blue curves.

• The best agreement with data is the full model with the Graczyk-Sobczyk form-factor
[17] which is the default form-factor in this work.
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According to [59], the φ distribution (only shape) is almost unaffected by nuclear effects,
therefore experiments with a nuclear target can also be a good probe to extract the axial form-
factors in the neutrino-nucleon models, while bubble chamber data is not precise enough
to distinguish different models. Many experiments are currently measuring differential
cross-sections precisely, on nuclear targets. If they will measure precise φ distribution, it can
shed light on the axial form-factor.

5.5 The Rein model

The first idea of how to add the non-resonant amplitudes to the RS model helicity amplitudes,
in this work, came from Rein model [9]. The Rein model use three Born graphs as for
the nonresonant background contribution which is based on linear sigma model [11]. It
also neglect the charged lepton mass. In Rein’s model the multipoles for different angular
momentum is calculated8 for the Born graphs, and only multipoles with l ≥ 2 is taking into
account. The MK-model and Rein model are similar for the resonant interaction and they
both use the RS model. The differences are the nonresonant background contribution and the
charged lepton mass that is restored in the MK-model.
In this section we show some result from the Rein model and compare it with data and
the MK-model. This will show us how much a different nonresonant model can change
the predictions. Figure 5.24 show the W-distribution of BEBC experiment with the Rein
model and MK-model predictions. Since both models have the same RS-model for resonance
contribution, We also show the MK-model without the background contribution (RS-model
with GS form-factos) for fitted parameters in Equation 5.4.
The other comparison is for Q2-differential cross-section for BEBC flux with two different

invariant mass cuts, i.e. in two W < 1.4 GeV and 1.4 GeV <W < 2 GeV regions. The Rein
model uses the RS form-factor [9], while MK-model is using the GS form-factor [17] in the
Delta region, but we use same treatment for the higher resonances. Although both models use
the same data sets for extracting the axial form-factor, but their predictions are significantly
different in normalization and shape which can be also due to the background.

5.6 Conclusion

Existing bubble-chamber data on light nucleon are old with large error and this situation is
very unlikely to be improved. This data is used to validate cross-section models defined in

8This is very CPU consuming and not good for neutrino generators
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Fig. 5.23 W-distribution for different neutrino and antineutrino CC channels from [40].
Curves are the Rein’s model (dashed green) and MK-model (solid red) and RS-model with
GS form-factors (dotted-blue). All curves are normalized to the data. The Rein model
prediction is digitized from reference [40].
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Fig. 5.24 Q2-differential cross-section for different neutrino CC channels from [40]. Curves
are the Rein’s model (dashed blue) and MK-model prediction (solid red) for W < 1.4 GeV
and 1.4 GeV <W < 2 GeV invariant mass regions. The Rein model prediction is digitized
from reference [40].
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section 2.1 and to extract the axial form-factors. The single pion production (SPP) model
proposed in the previous chapters is also a cross-section model, and it should be validated
with the bubble-chamber data. This was the main goal in this chapter to extract the axial
form-factor in resonant interactions and show the consistency between model and data.
The single pion production model described in this work with all fitted parameters and
signs(described in this chapter) is called MK-model. The model describes the neutrino-
nucleon interactions and it does not include the deuterium effects. The MK-model has several
advantages compared with several other SPP models in the market:

• It consists of resonant and nonresonant interactions including the interference effects.

• It is valid up to W = 2 GeV, which is a suitable range of W for neutrino generators
like NEUT.
Models described in [8] and [10] for instance, are only valid in the ∆ region.

• It is a full kinematics model i.e. the full differential cross-section is dσ/dWdQ2dΩ.
The output of RS model is dσ/dWdQ2, and in terms of pion angles the model defines
density matrix which has very difficult form and not suitable for generators, therefore
NEUT [56] and GENIE[57] have only ∆ implementation, and the result shows a
significant difference in pion angle distributions compared to what NEUT predicts.

• It has a suitable form for implementation.

• It has good agreement with almost all available bubble chamber’s data (within a large
error) for CC and NC (anti-)neutrino channels in the different range of neutrino energy
with neutrino and antineutrino beams.

The available models for single pion production satisfy some of the items described above.
For instance, the Rein-Sehgal model [7] does not include a reliable model for nonresonant
interaction while the described model in References [10, 8] are only valid in the ∆ region.
The Rein model [9] on the other hand, is very CPU consuming to calculate all multipoles
(for different angular momentum) and not suitable for the neutrino generators.





Chapter 6

Implementation of the Single Pion
Production Model in NEUT

In the previous chapters, a new model has been introduced that describes single pion pro-
duction in the neutrino-nucleon interactions. However, its results can be only compared
with old bubble chamber measurements on light nucleus such as hydrogen and deuterium
as they are presented in chapter 5. The satisfactory results for free nucleon motivated us to
include the nuclear effects in order to check the model predictions for nuclear targets like
carbon and oxygen which are typical target materials in the current neutrino experiments
with high statistics. The impact of nuclear effects on single pion production was described in
subsection 2.1.2 within two processes of initial state interaction and the final state interaction
(FSI). To this end, we will use neutrino generators because they include the nuclear effects.

NEUT and GENIE are designed such that the total cross-section as a function of energy
for each mode is computed before the event generation and stored in tables. This allows the
probability of each interaction modes for a selected neutrino energy. An event can then be
generated for the interaction mode selected, where the momentum and direction of every
outgoing particle are specified. After the simulation of an interaction, the outgoing particles
are propagated through the nuclear medium where they are allowed to interact.
A model in a Monte Carlo-based generator must be efficient and fast enough. This has been
already checked for the MK-model using the cross-section calculation code, introduced in
chapter 5. It was also the main focus while developing the MK-model, and the calculation
(in chapter 3 and 4) had been revised several times in order to address the requirement.
In this chapter, we will talk about the single pion production model implemented in the two
Monte Carlo (MC) neutrino interaction generators which are used by the current neutrino
experiments. Then we describe the implementation of the proposed MK-model into NEUT.
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Then details of the implementation in NEUT and validation plots will be given. Finally,
we will show NEUT predictions with presently used models and with the new MK-model
implementation (the result of work presented in this thesis) on nucleon and nuclear targets.
Results in this chapter and next chapter are given for the parameters given in item 2 which is
fitted to all CC neutrino data (ANL, BNL).

6.1 Monte Carlo generators of the neutrino interactions

In the following, we briefly describe the single pion production model in two Monte Carlo
(MC) neutrino interaction generators: NEUT [56], the official generator of the Super-
Kamiokande and T2K collaborations; and GENIE [57], which is widely used by the neutrino
scattering and oscillation communities.
Both NEUT and GENIE use the Rein-Sehgal model [7] although there are some differences
between the implementations. Here we summarize the differences:

• NEUT has 18 resonances implemented from the original paper [7] up to W ≤ 2 GeV
with the interferences among resonances, while GENIE implemented 16 resonances
up to W ≤ 1.7 GeV, without the interference effects.

• NEUT implemented the lepton mass based on Berger-Sehgal paper [13], while GENIE
has only the lepton mass correction on the phase space.

• NEUT implemented Graczyk-Sobczyk resonance’s form-factor from [17], while GE-
NIE has RS form-factor from [7].

• For nonresonant background, NEUT implemented the nonresonant contribution for
isospin 1/2 resonances from the original RS paper [7], while GENIE did not implement
it.

Pion angular distributions in the RS-model are described by density matrix for all resonances,
however both NEUT and GENIE only implemented the ∆(1232) resonance, i.e. both
generators predict a symmetric distribution for θ angle as it is described in section 5.4.

6.2 Details of the implementation in NEUT

The implementation of the MK-model in the NEUT generator follows the existing imple-
mentation of the RS-model [7]. There are three channels for CC (anti-)neutrino channels
and four channels for NC (anti-)neutrino given in Equation 3.1 - 3.4. Altogether there are 7
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neutrino channels and similarly 7 antineutrino channels.
The basic event generation algorithm for single pion production in the current NEUT is as
follows:

1. Randomly select a neutrino energy (Eν ).

2. Randomly select the initial state nucleon momentum from a nuclear model (chapter 2).
The probability of finding a nucleon with three-momentum and energy within Fermi
gas model is related to the Fermi momentum and binding energy of the nucleus.

3. Randomly select a neutrino interaction for the selected Eν . Probability of each channel
is based on precalculated σ(Eν) table. If it picks single pion production channels, then
goto step 4.

4. randomly generate W in allowed region:

M+mπ ≤W ≤Wmax,

where Wmax is the maximum value of W . In full phase space Wmax =
√

2MEν +M2 −
ml

1, but if Wcut <
√

2MEν +M2 −ml then Wmax =Wcut .

5. Get a maximum cross-section for the selected Eν . We step around the region in W
and Q2 that we expect to get the maximum cross-section. For W we expect to get
the maximum cross-section around the ∆ peak (1.15 ≤W ≤ 1.25) and we expect to
get the maximum cross-section at low Q2 (0.08 ≤ Q2 ≤ 0.18). At different energy
and channels the maximum cross-section can be at secondary resonance peak but
comparable to the ∆ peak, therefore the maximum cross-section is multiplied to a
safety factor (which is 1.5 in NEUT) to make sure that this is largest value in the whole
phase space.

6. Generate a random cross-section up to the maximum cross-section from step 5.

7. Randomly generate 0 ≤ Q2 ≤ 4E2
ν . If it is not in kinematically allowed region:

−m2
l +

MEν

2MEν+M2 (2MEν +M2 +m2
l −W 2 −

√
λ )≤ Q2 ≤

−m2
l +

MEν

2MEν+M2 (2MEν +M2 +m2
l −W 2 +

√
λ )

where λ = (2MEν +M2 −m2
l −W 2)2 −4.∗m2

l W 2 (6.1)

then go back to step 5.
1M, mπ and ml are mass of nucleon, pion and lepton respectively.
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8. Calculate the differential cross-section (dσ/dWdQ2) from the RS-model for the se-
lected event.

9. If the value in 6 is larger than the value in step 8, we reject the event and go back to
the step 7. Otherwise we accept it and continue.

10. Randomly generate θ and φ such that 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π .

11. The angular distribution of ∆ resonance with the aid of the density matrix, in terms
of spherical harmonics is given in the RS-model [7]. One can easily find a maximum
value of the angular distribution.

12. Generate a random cross-section up to the maximum value from step 11.

13. Calculate the exact value of angular distribution for ∆ resonance by knowing the pion
angles from step 10.

14. If the value in step 12 is larger than the value in step 13, we reject the event and go
back to the step 10. Otherwise we accept it and continue.

15. The cross-section in steps 5 and 9 and the angular distribution in steps 11 and 13 are
calculated in the isobaric frame, therefore we need to boost it to the lab frame.

16. Apply Pauli blocking to the outgoing nucleon, if an event is Pauli blocked, NEUT
leaves it as Pauli-blocked event, i.e. set all outgoing particles inactive and the cross-
section does not take into account this event2.

Steps 5- 10 are related to the RS-model while steps 2 and 16 are related to the nuclear
model. Therefore replacing MK-model with RS-model, one need to modify all steps 5- 14.
Besides the cross-section table in step 3 should be filled with the MK-model predictions for
all channels.
RS-model provides dσ/dWdQ2, therefore we only need to generate a random number for
W and Q2 to calculate the cross-section. If the event in the step 10 is accepted, the angular
distributions (based on density matrix given in [7]) will be provided later. However the density
matrix which is implemented in NEUT is not complete and it only includes ∆ resonance
for simplicity, as it mentioned in section 6.1. On the other hand, the MK-model provides
a full kinematic cross-section (dσ/dWdQ2dΩ), and the event is generated in one step and
there is no assumption in the angular calculation. Therefore the angular distribution of the
existing RS-model is only from ∆ resonance while the angular distribution of the MK-model

2NEUT keeps these event to check the consistency with cross-sections in table.
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implementation takes into account all resonant and nonresonant ingredients including all
interference terms. Here is the new algorithm for the MK-model implementation:

1. Randomly select a neutrino energy (Eν ).

2. Randomly select the initial state nucleon momentum from a nuclear model (chapter 2).

3. Randomly select a neutrino interaction for the selected Eν . Probability of each channel
is based on precalculated σ(Eν) of the MK-model. If any channels of single pion
production, then goto step 4.

4. Randomly generate W in allowed (M+mπ ≤W ≤Wmax) region.

5. Get a maximum cross-section for the selected Eν . We step around the region in W
and Q2 that we expect to get the maximum cross-section. θ and φ have almost a
flat distributions therefore we step around whole phase space to find the maximum
cross-section. The same safety factor (which is 1.5, like before) is also multiplies to
make sure that this is the largest value in whole phase space.

6. Generate a random cross-section up to maximum cross-section.

7. Randomly generate 0 ≤ Q2 ≤ 4E2
ν , and check if it is in the kinematically allowed

region. If not, then go to step 5.

8. Randomly generate θ and φ , such that 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π .

9. Calculate the differential cross-section from MK-model (dσ/dWdQ2dΩ in Equa-
tion 3.60) for the selected event.

10. If the value in 6 is larger than the value in step 9, we reject the event and go back to
the step 7. Otherwise we accept it and continue.

11. The cross-section in steps 5 and 9 is calculated in the isobaric frame, therefore we need
to boost it to the lab frame.

12. Apply Pauli blocking to the outgoing nucleon.

6.3 Validation of the implementation

As discussed in chapter 5, MK-model is implemented in the cross-section calculation (CSC)
code that can provide differential cross-section in variables like Q2, invariant mass W and
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cosθ in the isobaric frame3. In this chapter the MK-model is implemented in NEUT. Now we
will compare the output of NEUT for free nucleon (the MK-model) with the output of CSC
code for Q2, W , and cosθ differential cross-sections with fixed neutrino energy. Note that
the model is the same but integration methods are different in the cross-section calculation
code and Monte Carlo generator, therefore we expect to get exactly the same result if we
generate enough events in NEUT.
Figure 6.1 shows both results for ν p → µ pπ+ channel, as a function of Q2 W and cosθ in
the isobaric frame for a fixed energy Eν = 1 GeV.
We should do the same for all other CC and NC (anti-)neutrino channels. In Figure 6.2 we
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Fig. 6.1 Differential cross-section in Q2 (top-left), W (top-right) and cosθ in the isobaric
frame (bottom) for a fixed energy Eν = 1 GeV. The blue histograms are the output of NEUT
(with 500000 events), and the dashed-red curves are the output of CRC. As we see the results
are identical.

show some of the validation plots i.e. the differential cross-section as a functions of Q2 and
W for different channels.
The exact agreement between cross-section calculation code and NEUT in the validation

plots is a confirmation that MK-model is implemented in NEUT correctly. Now we are

3That is why we could compare the model prediction with bubble chamber data.
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Fig. 6.2 Differential cross-section as a functions of Q2 (left), W (right) for different channels
and fixed energy Eν = 1 GeV. The blue histograms are the output of NEUT, and the
dashed-red curves are the output of CSC code. As we see the results are identical.
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allowed to move forward and do the Monte Carlo comparisons to analyse differences of the
new MK-model with respect to the existing RS-model.

6.4 NEUT RS-model vs NEUT MK-model

The MK-model is implemented successfully as it is discussed in the previous section. Now
we are able to show the NEUT predictions with the MK-model for different targets and all
interesting variables.
In this section, we compare the outputs of NEUT 5.3.6 (RS models) and same version
of NEUT with the MK-model (instead of RS-model). The RS-model in NEUT 5.3.6 has
three adjustable parameters; MA and CA

5 for Graczyk-Sobczyk form-factors [17], similar to
MK-moodel. The RS-model proposed a helicity amplitudes of nonresonant contribution for
resonant background with isospin 1/2 multiplied by an adjustable parameter. The comparisons
consist of differential cross-section as a function pion and muon momenta and angles in the
lab frame, for free nucleon and nuclear target.
The main goal in this section is to show how much the MK-model modifies NEUT predictions
for T2K simulation. For this reason we generate events with T2K (near detector) flux [60]
and CH target4.

6.4.1 Nucleon target

All CC and NC (anti-)neutrino-nucleon channels are shown in Equations 3.1 - 3.4. Here
we show NEUT comparisons for few selected channels on free nucleon with invariant mass
W < 2 GeV cut. The differential cross-section are a functions of W and Q2, pion and muon
momenta in the lab frame (pµ , pπ ), the angle between pion and neutrino in lab frame (θπ ),
the angle between muon and neutrino in lab frame (θµ ).
For CC neutrino interaction we choose ν p → µ pπ+ and νn → µnπ+ channels. Figure 6.3
shows the NEUT predictions with RS-model and the MK-model for ν p → µ pπ+ channel
with isospin 3/2, which is dominated by ∆ resonance. It shows similar normalization (area
below histogram which is cross-section) but different shapes for pion kinematics.
As discussed in subsection 5.2.1 the axial form-factor is extracted from bubble chamber data
for ν p → µ pπ+ channel. The adjustable parameters in NEUT 5.3.6 are also fitted to the
same data set, therefore we expect to have similar cross-section (normalization) comparing
RS-model with MK-model. In this channel, ∆ resonance is dominant and it is clearly visible
in dσ/dW (top-right plot) where the histogram has a significant peak around W = 1.22 GeV.

4Next chapter we will talk about T2K near detector (ND280).
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The different shapes on tail are due to the nonresonant interactions and the interference
effects. For dσ/d cosθπ (right-bottom plot), the MK-model predicts less pion at forwards
direction which is consistent with same cross-section in the Adler frame5 (compare shapes
of solid and dashed curves in Figure 5.20).
Figure 6.4 shows the same comparisons for νn → µnπ+ channel where all resonances (with
isospin 1/2 and 3/2) can contribute. This is visible in dσ/dW (top-right plot), where ∆

resonance is not the only peak. This plot also shows the effect of different form-factors at
higher W (see Figure 6.4). Figure 6.4 shows that NEUT predictions are different (between RS
and MK model) in both shape and normalization which is due to the nonresonant background
that has significant effects in this channel.

For CC anti-neutrino interaction we choose ν̄n → µ+nπ− and ν̄ p → µ+pπ− channels.
Figure 6.5 shows the NEUT predictions with RS-model and the MK-model for ν̄n → µ+nπ−

channel with isospin 3/2, which is clearly dominated by ∆ resonance in dσ/dW (top-right
plot). All plots in Figure 6.5 show different normalization and different shapes. We expected
to see different normalization from Figure 5.15, where the MK-model predicts larger cross-
section and apparently better agreement with data.
Figure 6.6 shows the NEUT comparisons for ν̄ p → µ+pπ− channel where all resonances
contribute. This channel has the same isospin (1/2 and 3/2) combinations as νn → µnπ+

channel as it is clear from dσ/dW (top-right) plot. It shows that NEUT predictions are
different (between RS and MK model) in both shape and normalization. We expected to see
different normalization from Figure 5.15, where the MK-model predicts larger cross-section
and apparently better agreement with data. The shape discrepancy is due to the nonresonant
contribution and interferences effects.
For NC neutrino interaction we choose ν p → ν pπ0 and ν p → νnπ+ channels. All NC

channels are a mixture of both isospins 1/2 and 3/2 with different isospin coefficients.
Figure 6.7 shows the NEUT predictions with RS-model and the MK-model for ν p → ν pπ0

channel where all plots show different normalization and shape. We expected to see different
normalization from Figure 5.17, where the MK-model predicts larger cross-section.
Figure 6.8 shows the same comparisons for ν p → νnπ+ channel. Similar to other channels
it shows that NEUT predictions are different (between RS and MK model) in both shape
and normalization. We expected to see different normalization from Figure 5.17, where the
MK-model predicts less cross-section. The shape discrepancy is due to the nonresonant
contribution and interferences effects.

Unfortunately, there is no reliable data for neutral-current interactions except very few
events from bubble chambers with large errors. However NC1π0 sample is particularly

5We can do this only for the forward bins and for this channel since we have similar normalization.
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Fig. 6.3 Differential cross-section of ν p → µ−pπ+ channel for T2K energy, as a functions
of lepton kinematics (left plots) and hadron kinematic (right plots) as it is predicted by NEUT
5.3.6 for RS model (blue) and the MK-model (red).
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Fig. 6.4 Differential cross-section of νn → µ−nπ+ channel for T2K energy, as a functions of
lepton kinematics (left plots) and hadron kinematic (right plots) as it is predicted by NEUT
5.3.6 for RS model (blue) and the MK-model (red).
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Fig. 6.5 Differential cross-section of ν̄n → µ+nπ− channel for T2K energy, as a functions of
lepton kinematics (left plots) and hadron kinematic (right plots) as it is predicted by NEUT
5.3.6 for RS model (blue) and the MK-model (red).
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Fig. 6.6 Differential cross-section of ν̄ p → µ+pπ− channel for T2K energy, as a functions
of lepton kinematics (left plots) and hadron kinematic (right plots) as it is predicted by NEUT
5.3.6 for RS model (blue) and the MK-model (red).
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Fig. 6.7 Differential cross-section of ν p → ν pπ0 channel for T2K energy, as a functions of
lepton kinematics (left plots) and hadron kinematic (right plots) as it is predicted by NEUT
5.3.6 for RS model (blue) and the MK-model (red).
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Fig. 6.8 Differential cross-section of ν p → νnπ+ channel for T2K energy, as a functions of
lepton kinematics (left plots) and hadron kinematic (right plots) as it is predicted by NEUT
5.3.6 for RS model (blue) and the MK-model (red).
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important for water Cherenkov detector like Super-Kamiokande [64]. NC1π0 is the main
background in νe appearance searches because NC1π0 might be misidentified as charge
current νeN → eN interaction since they produce similar rings6. Therefore a reliable model
is crucial for neutrino oscillation experiment like T2K.

6.4.2 Neutrino-Nucleus interactions

To study the nuclear effects (as it was explained in subsection 2.1.2) we run NEUT with CH
target, which is a target used in many current experiments. Similar to the previous section
we do the comparison between NEUT 5.3.6 with RS-model and NEUT with MK-model,
however, the comparison can not be based on channels because the initially produced hadrons
in neutrino-nucleon interactions can be different than the outgoing particles being detected at
the end due to the FSI effects. Therefore the comparison is based on different samples. Note
that nuclear models are the same for both cases.
For CC1π+ we select events with one muon and one π+, and at least one nucleon in the
final states. Figure 6.9 shows NEUT predictions with MK-model and RS-model in various
kinematic variables for CC1π+ sample on CH target. All plots show discrepancy in nor-
malization and shape where this is due to the different cross-section (RS vs MK) models.
It is similar to the discrepancy presented in Figure 6.3 and Figure 6.4 for ν p → µ pπ+ and
νn → µnπ+ channels. For easier comparison we also show the CC1π+ sample on nucleon
(i.e. summation of the two channels) in Appendix J.
For anti-neutrino interactions, we also compare the NEUT predictions with both models for
CC1π− sample on the CH target in Figure 6.10. The discrepancy in normalization and shape
is very similar to the discrepancy presented in Figure 6.3 and Figure 6.4 for ν̄n → µ+nπ−

and ν̄ p → µ+pπ− channels. For easier comparison we also show the CC1π+ sample on
nucleon (i.e. summation of the two channels) in Appendix J.
Figure 6.9 and Figure 6.10 clearly show that the discrepancy at initial interaction remains

after final state interaction in nucleus. The nuclear effects reduce the total cross-section in
both CC1π+ (compare Figure 6.9 with Figure J.1) and CC1π− (compare Figure 6.10 with
Figure J.2) samples, mainly due to pion absorption in the final state interaction.

6This will be discussed in next chapter with Super-Kamiokande detector, in subsection 7.1.3.
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Fig. 6.9 Differential cross-section of CC1π+ sample on CH target for T2K energy, as a
functions of lepton kinematics (left plots) and hadron kinematic (right plots) as it is predicted
by NEUT for RS model (blue) and the new model (red).
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Fig. 6.10 Differential cross-section of CC1π− samples on CH target for T2K energy, as a
functions of lepton kinematics (left plots) and hadron kinematic (right plots) as it is predicted
by NEUT for RS model (blue) and the new model (red).



6.5 Conclusion 125

6.5 Conclusion

The MK-model has been implemented in NEUT, and its prediction was compared with the
current NEUT to show how different they are. The MK-model is a complete model with no
assumption neither in calculation nor in the implementation. There are different approaches
for nonresonant background in the two models. The RS-model rely on ad hoc terms proposed
in the RS-model [9] with an adjustable parameter which is fitted to the charged-current
neutrino channels, while the MK-model includes a sophisticated model for nonresonant
interaction.
Distinction between RS-model which is currently used for the T2K analysis and MK-model
appeared in both shape and normalization of differential cross-section as a function of differ-
ent variables. Unlike CC1π+ channels, CC anti-neutrino show a large discrepancy between
the two models for all comparisons. The large discrepancy in the normalization turned out to
be a strong point of the MK-model when we look at the comparison with bubble chamber
data in the previous chapter.
Apart from the normalization, there is a large discrepancy in the shape comparison for all
samples due to the nonresonant interaction and the interference effects. This is significant
for the pion polar angle especially in the very forward bins, which also affects on pion
momentum distributions.
To summarize, the implementation of MK-model in NEUT provides a complete description
of single pion production in the initial state interaction, which is significantly different than
the RS-model’s predictions that is currently used for T2K analysis. For more investigation,
next chapter is devoted to data (on nuclear target) comparison with NEUT prediction for both
models.





Chapter 7

Monte Carlo Predictions and
Comparison with Neutrino-Nucleus Data

Several modern neutrino experiments have measured the charged-current single pion pro-
duction on nuclear targets, with a wide/narrow band of a few-GeV energy (muon neutrino)
beam. In the previous chapter, we assumed that single pion production model is the only
cross-section model responsible for single pions. However, they can also be produced via nu-
cleon rescatterings of CCQE interactions and the coherent scattering, as they were discussed
in section 2.1. Deep inelastic scattering is responsible for single pion with W > 2 GeV in
NEUT.
In this chapter we describe three neutrino experiments; T2K, MINERνA and MiniBooNE.
They all provided measurements of the CC single pion production cross-section on various
target materials and with different (anti-)neutrino beams. To do the Monte Carlo comparison
with published data we should:

1. Choose the target and flux for individual experiments, in order to generate events1.

2. Analyze the events as it is done for data analysis, by selecting similar samples and
applying same selection.

For the second step, we are using NUISANCE [84] software in this chapter. The NUISANCE
is a software package to simplify the task of comparing neutrino event generators with
published cross-section data. More information about NUISANCE is in Reference [84].
At the end of each section, the first comparisons between NEUT with the MK-model and
data will be presented. To show the effects of the MK-model, we will also include the current
NEUT predictions with RS-model. Note that all models used in NEUT, except the model for
single pion production, are the same for the comparisons.

1we generate 15000 events with NEUT for all experiments.
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7.1 The T2K experiment

The T2K [63](Tokai to Kamioka) experiment is a long-baseline neutrino oscillation experi-
ment designed to study various neutrino oscillation parameters through νµ disappearance
and νe appearance, using a high intensity off-axis νµ beam.
A high purity νµ beam is produced at the Japan Proton Accelerator Research Complex
(J-PARC) on the east coast of Japan. There is a near detector complex located 280 m down-
stream of the target, which is designed to measure the unoscillated beam intensity, purity
and direction to high precision. The flavour composition of the beam is then measured 295
km downstream of the production point at the far detector, Super-Kamiokande [64], which
measures the oscillation parameters.
Both far detector and the off-axis near detector are placed 2.5◦ off-axis with respect to
the neutrino beam. This technique produces a narrow-band beam, which allows precision
measurements to be made. The baseline between the neutrino production point and the far
detector, 295 km, is carefully chosen to correspond to the first minimum in the νµ survival
probability at the peak neutrino beam energy of 0.6 GeV in order to maximise the effect
of neutrino oscillation at the far detector. The near detector can make the cross-section
measurements, therefore we also show (in Figure 7.1) the contribution of interaction types in
the narrow-band beam.

7.1.1 T2K beamline

Accelerator gives protons at 30 GeV, they are led to the primary target. The primary beamline
is used to bend the 30 GeV proton beam towards the detectors. The secondary beamline
consists of the target station, decay volume and beam dump, as shown in Figure 7.2.
Protons enter the target station where they will be focused toward target by magnetic horns.

The target itself is a 91.4 cm long, 2.6 cm diameter graphite rod located within the first
magnetic horn. The results of collisions are secondary mesons (mostly pions and kaons). The
charged mesons which are focused by the magnetic horns enter a 96 m long decay volume.
In this volume, the mesons decay to produce muon neutrinos and antineutrinos. The current
driving the magnetic horns can be inverted to focus either positively or negatively- charged
mesons, resulting in a predominantly neutrino or anti-neutrino beam.
At the downstream end of the decay volume, a 75 t graphite beam dump stops all hadrons
and most muons below 5.0 GeV and leaves the neutrinos to pass.
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Fig. 7.1 The top plot shows the muon neutrino survival probability for the T2K baseline and
the bottom plot shows the T2K neutrino flux as a function of energy for different off-axis
angles. The neutrino flux peaks at 0.6 GeV for an off-axis angle of 2.5◦, which corresponds
to the first oscillation maximum for T2K. Figure from Reference [63].

7.1.2 ND280 - the T2K Near detector

The off-axis ND280 detector is designed to reduce uncertainties in the flux and cross-section
predictions. It consists of a few subdetectors as it is shown in Figure 7.3. The central
part contains of a π0 detector (the P/0D), the tracker region, as well as the downstream
electromagnetic calorimeter (DsECal). The tracker consists of two fine-grained detectors
(FGDs), which provide a target (carbon and oxygen) for neutrino interactions with high
resolution around the interaction vertex, and three time projection chambers (TPCs) are then
used to measure the interaction products, and give very good momentum resolution and
particle identification. A sample single pion production event is also shown in Figure 7.3.
FGD1 is more upstream and is composed of 30 layers scintillator bars with layers in the x
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Fig. 7.2 Overview of the T2K beamline. Figure from [63]

and y directions allowing 3D tracking of charged particles. The downstream FGD2 has a
total of 14 layers of scintillator bars, arranged in pairs of XY layers between which there are
six 2.5 cm thick layers of water.
Although the other ND280 subdetectors are also important for the cross-section program, we
will not discuss them here. For more details, see References [65–69].

7.1.3 Far detector (Super-Kamiokande)

Super-Kamiokande (SK) [64] is a large water Cherenkov detector. It serves as the far detector
of the T2K experiment and is located in the Kamioka mine, 295 km in straight line from
J-PARC facility. SK has been operating since 1996, long before the T2K experiment, with a
broad physics program. It is composed of two huge cylindrical constructions, one within the
other. The entire container is filled with 50 kt of ultra-pure water and is a target for neutrino
interactions.
Charged particles produced by neutrino interactions emit Cherenkov radiation in a cone as
they travel through water, and will be detected by the PMTs on the walls of the detector,
where they form a ring-shaped hit pattern. Note that Cherenkov light is only produced by
charged particles with sufficient energy to travel faster than the speed of light in the medium
through which they are passing; typically, nucleons are below threshold so are unseen by SK.
Muons and electrons can be distinguished at the SK by ring-shaped patterns (see Figure 7.4)
produced by the Cherenkov light cones. Muons have a relatively large mass and do not
rescatter as they pass through the water in the detector, producing a "sharp" ring, while
electrons rescatter and generally induce electromagnetic showers at SK energies which
produce a "fuzzy" ring, a sum of multiple Cherenkov light cones.
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Fig. 7.3 Left: components of ND280 (T2K near detector) from Reference [63]. Right: a
single pion production event in ND280 tracker (FGD 2).

An important point related to the single pion production is that NC1π0 sample is a serious

Fig. 7.4 Example events in Super-Kamiokande for a muon (left), and an electron (right) event.
The colour scale represents arrival time of light at a PMT, ranging from early (violet) to late
(red) times.

background for the single-ring electron-like sample in Super-Kamiokande. The single π0

produced from the interaction of a neutrino with water target will decay immediately to two
photons, which Compton scatter and produce e−− e+ pairs. These result in Cherenkov rings
that are indistinguishable from those produced by electrons from CCQE scattering. If one of
the two rings is not reconstructed or the rings overlap, it will look identical to a νe CCQE
event.
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7.1.4 T2K data and Monte Carlo predictions

T2K collaboration provided measurements of the CC single π+ production (CC1π+) cross-
sections on water target (FGD2) with the T2K near detector [70]. CC1π+ events are selected
by requiring one muon, one positive pion, no other additional pions and any number of
nucleons, i.e.

νµ +H2O → µ
−

π
++X (7.1)

where X is any number of nucleons in the final state.
The analysis also restricts the kinematic phase-space to the region defined by

pπ > 200 GeV , cosθπ > 0.3

pµ > 200 GeV , cosθµ > 0.3 (7.2)

to increase the efficiency of reconstruction for the CC1π+ sample. The predicted neutrino
beam flux (peaks at 0.6 GeV) is given in [60]. To do the comparison we use the same target
and flux. We also apply same cuts described before.
Figure 7.5 shows the comparison between the T2K data [70] and the NEUT predictions
with MK-model and RS-model as single pion cross-section model. The comparisons have
been made for CC1π+ differential cross-sections as a function of pion kinematics, muon
kinematics, the angle between pion-muon and reconstructed neutrino energy in the reduced
phase-space (Eq. 7.2).
All plots show better agreements with the MK-model and as we expected, there is more

discrepancy between the two models in pion kinematics than muon kinematics, but the
largest discrepancy appears in differential cross-section as a function of cosθµ,π , shown in
the bottom right plot of Figure 7.5.
Note that current NEUT with RS-model has three adjustable parameters (see chapter 5),
and they have been already fitted to bubble chamber data, for various kinematics in order to
reduce the T2K systematic uncertainty. On the other hand, the MK-model has two parameters,
and they are only fitted to ANL Q2-differential cross-section to extract the axial form-factors
for resonant interaction, as it was explained in subsection 5.2.1.
According to Figure 7.5, the T2K data on water prefers MK-model, even without additional
free parameter and extra fitting with bubble chamber data.
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Fig. 7.5 T2K measurements on water for CC1π+ differential cross-sections as a func-
tion of pion kinematics (top), muon kinematics (center), cosθµ,π (bottom right) and recon-
structed neutrino energy (bottom left) in the reduced phase-space of pπ+ > 200 MeV/c, pµ >
200 MeV/c,cosθπ > 0.3 and cosθµ > 0.3. Histograms show NEUT predictions with MK-
model (solid-red) and RS-model (dashed-blue). Degrees of freedom are different (between
9-14).
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7.2 The MINERνA experiment

The MINERνA experiment (Main INjector ExpeRiment ν-A) [71] is designed to make high
precision measurements of neutrino-nucleus scattering cross-sections. It uses a fine-grained,
plastic-scintillator tracking detector [71] in conjunction with the magnetized MINOS near
detector [73], to record interactions of neutrinos and antineutrinos from the high-intensity
Neutrinos at the Main Injection (NuMI) beam at Fermilab [72]. The MINOS near detector is
located downstream of the main MINERνA detector, and is used as a muon spectrometer.
As the MINOS detector is magnetised, it is enabling the unmagnetised MINERνA detector
to measure the momentum and charge of the muons.
The NuMI beam is described in Reference [72]. The primary 120 GeV proton beam is
delivered by the Fermilab Main Injector and strikes a graphite target. The results discussed in
this thesis used the low-energy NuMI beam, which produces a wide-band beam with neutrino
energies extending from 1 GeV to greater than 20 GeV and a peak energy of 3 GeV.
The main part of the MINERνA detector is separated into inner and outer detector regions.
The inner detector is composed of four distinct regions: the nuclear targets region, the tracker
region, an electromagnetic calorimeter, and a hadronic calorimeter as it is shown in Figure 7.6.
Each region is divided into modules which consist mostly of hexagonal scintillator planes.

The fully active tracker region is the target for the cross-section measurements used in

Fig. 7.6 Front view of a single MINERνA detector module. Figure is from Reference [71].

this thesis. The target material is therefore the scintillator itself, composed of long-chain
hydrocarbons, which can be treated as a CH target. For more details, see Reference [71].
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Fig. 7.7 MINERνA measurements on CH for ν̄-CC1π0 total cross-sections as a function
of energy. Histograms show NEUT predictions with MK-model (solid-red) and RS-model
(dashed-blue). Degree of freedom is 8.

7.2.1 MINERνA anti-neutrino data and Monte Carlo predictions

The data we are using here is from Reference [75] - the latest single pion production
measurements with anti-neutrino beam (published in 2016), with improved flux results. The
measurement is on hydrocarbon (CH) target, in the following channel:

ν̄µ +CH → µ
++π

0 +X (7.3)

The sample is restricted to events having only one π0 and one µ+. In the analysis, the
anti-neutrino flux [74] with the energy restricted to 1.5 GeV < Eν < 10 GeV is used. Further
restriction is that hadronic mass is W ≤ 1.8 GeV. In the MC simulations we apply similar
cuts as those above.
To show the comparison between the MINERνA data and NEUT predictions with the MK-
model and the RS-model, we start with the total cross-section as a function of Eν . Figure 7.7
shows that the MK-model has a better agreements at higher energy while the RS-model has
better agreement at lower energy. It also shows that MK-model predicts larger cross-section
in all the energy range.
The Q2 differential cross-section is shown in the left plot of Figure 7.8. Comparing MK-

model and the RS-model in this plot does not reveal which model is better, but we should keep
in mind that the RS-model has been the default model for single pion cross-section model in
NEUT for years, with three adjustable parameters fitted to the single pion production data,
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Fig. 7.8 The Data-NEUT comparison for Q2-differential cross-section. Data is from Refer-
ence [75], the MINERνA measurements on CH for ν̄-CC1π0 sample. Histograms show the
cross-section (left), and normalized cross-section to the data (right) of the NEUT predictions
with MK-model (solid-red) and RS-model (dashed-blue). Degree of freedom is 8.

before producing the systematic uncertainties.
We also show the shape comparison of the Q2 differential cross-section in the right plot of
Figure 7.8, where the NEUT predictions are normalized to the MINERνA data. Here it is
clear that the two models predict different Q2 distribution.
The next comparison we present in Figure 7.9 is for the muon kinematics. The differential
cross-section as a function of muon momentum and muon polar angle in the lab frame is
measured by the MINERνA experiment. The NEUT predictions are with the RS-model
and the MK-model. We also show the shape comparison where the NEUT prediction is
normalized to the data. The plots show that the two modes are not just different in the
normalization, but they also predicts different distributions for the muon kinematics.
The pion kinematics and especially the pion angle is where we expect to see the main
differences between two models. Figure 7.10 shows the differential cross-section as a
function of pion kinetic energy and pion angle in the lab frame. The data is from Reference
[75]; the MINERνA measurements on CH for ν̄-CC1π0 sample. To do the comparison we
also show the NEUT predictions with the MK-model and the RS-model for the Tπ -differential
cross-section and θπ -differential cross-section in top plots, where the NEUT prediction is
significantly different for the MK-model and the RS-model, especially for the pion angle.
The same data are presented in bottom plots of Figure 7.10, but the histograms are normalized
to the data to show the shape comparisons, where the two models also predicts different
shapes especially for the pion angle.
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Fig. 7.9 MINERνA measurements on CH for ν̄-CC1π0 differential cross-sections as a func-
tion of muon momentum(top-left) and muon angle (top-right) in the lab frame. Histograms
show the NEUT predictions with MK-model (solid-red) and RS-model (dashed-blue) for the
cross-section (top), and normalized cross-section to the data (bottom). Degree of freedom is
9.
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Fig. 7.10 MINERνA measurements on CH for ν̄-CC1π0 differential cross-sections as a
function of pion kinetic energy (left) and pion angle (right). Histograms show NEUT
predictions with MK-model (solid-red) and RS-model (dashed-blue) and it bottom they are
normalized to the data. Degree of freedom is 7 for the kinetic energy and 11 for pion angle.
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Fig. 7.11 MINERνA measurements on CH for ν-CC1π0 total cross-sections as a function
of energy. Histograms show NEUT predictions with MK-model (solid-red) and RS-model
(dashed-blue).

7.2.2 MINERνA neutrino data and Monte Carlo predictions

The data we are using here is from Reference [86]- very recent (August 2017) single pion
production measurements with neutrino beam. The measurement is on hydrocarbon (CH)
target, in the following channel:

νµ +CH → µ
−+π

0 +X (7.4)

The sample is restricted to events having only one π0 and one µ−. In the analysis, the
neutrino flux [74] with the energy restricted to 1.5 GeV < Eν < 20 GeV is used. Further
restriction is that hadronic mass is W ≤ 1.8 GeV. In the MC simulations we apply similar
cuts as those above.
To show the comparison between the MINERνA data and NEUT predictions with the MK-
model and the RS-model, we start with the total cross-section as a function of Eν . Figure 7.11
shows that both models predict similar cross-sections at low energy (Eν < 4 GeV), and this
is what we expected from Figure 5.13. However, they have different predictions at higher
energy where MK-model predicts larger cross-section.

The Q2 differential cross-section is shown in the left plot of Figure 7.12. Comparing
MK-model and the RS-model in this plot does not reveal which model is better, but it seems
the MK-model has better prediction at very low Q2 (less than 2.5 GeV2 while RS-model is
better at 2.5 GeV2 < Q2 < 6 textGeV 2.
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Fig. 7.12 The Data-NEUT comparison for Q2-differential cross-section. Data is from Refer-
ence [86], the MINERνA measurements on CH for ν-CC1π0 sample. Histograms show the
cross-section (left), and normalized cross-section to the data (right) of the NEUT predictions
with MK-model (solid-red) and RS-model (dashed-blue).

We also show the shape comparison of the Q2 differential cross-section in the right plot
of Figure 7.12, where the NEUT predictions are normalized to the MINERνA data, and it
is very similar to the left plot which means NEUT predictions and data have almost same
normalizations.
Figure 7.13 shows the differential cross-section as a function of pion kinetic energy and pion
angle in the lab frame. To do the comparison, the NEUT predictions with the MK-model
and the RS-model for the Tπ -differential cross-section and θπ -differential cross-section in
top plots, where the NEUT prediction with MK-model predicts more pions at lower Tπ and
forward direction (θπ < 50◦) than RS-model. The same data are presented in bottom plots of
Figure 7.13, but the histograms are normalized to the data to show the shape comparisons,
where the MK-model shows better agreement with data at forward direction i.e. θπ < 60◦.
Recent MINERνA result also reports the differential cross-section as a function of pπ0

invariant mass in ∆ region (W < 1.4 GeV) and higher W < 1.8 GeV region. The invariant
mass, Mpπ0 , is calculated from the reconstructed π0 and the leading proton. In this analysis,
events are required to have a leading proton in the final state with kinetic energy Tp >

100 MeV. The MINERνA data and NEUT prediction for Mpπ0-differential cross-section is
shown in Figure 7.14 where MK-model predicts more pion at Mpπ0 < 1.2 GeV region due to
the nonresonant background. This is consistent to the top-left plot in Figure 7.13 where the
Tπ0- differential cross-section by MK-model is higher at low kinetic energy.
The next comparison is for the muon kinematics. The differential cross-section as a function

of muon momentum and muon polar angle in the lab frame is measured by the MINERνA
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Fig. 7.13 Pion kinetic energy (left) and pion angle (right) differential cross-section in the lab
frame for ν-CC1π0 sample. Histograms show NEUT predictions with MK-model (solid-red)
and RS-model (dashed-blue). They are normalized to the data in the bottom plots.
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Fig. 7.14 Differential cross-section as a function of pπ0 invariant mass with W < 1.8 GeV
(left) and W < 1.4 GeV (right) for ν-CC1π0 sample. Histograms show NEUT predictions
with MK-model (solid-red) and RS-model (dashed-blue). They are normalized to data in the
bottom plots.
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Fig. 7.15 Differential cross-sections as a function of muon momentum(top-left) and muon
angle (top-right) in the lab frame. Histograms show the NEUT predictions with MK-model
(solid-red) and RS-model (dashed-blue) for the cross-section (top), and normalized cross-
section to the data (bottom).

experiment. Figure 7.15 show data and the NEUT predictions with the RS-model and the
MK-model where the NEUT predictions are very similar. We also show the shape comparison
where the NEUT prediction is normalized to the data.

7.3 The MiniBooNE experiment

The MiniBooNE experiment [76] was designed to test ν̄µ → ν̄e oscillation signal. Mini-
BooNE uses the Booster Neutrino Beam(BNB) at Fermilab, which has a peak energy of
approximately 700 MeV. The BNB at Fermilab [83] uses 8 GeV protons from the Fermilab
booster. The same booster feeds the Main Injector used by the MINERνA experiment. The
protons strike a beryllium target inside a single magnetic horn, which focuses the beam of
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secondary mesons of a given charge (selected by changing the polarity of the horn). The
secondary beam is directed down a 50m long decay pipe, where most mesons decay in flight.
The MiniBooNE detector [76] can detect neutrino interactions in a 12 m diameter sphere
of pure(undoped) mineral oil. The MiniBooNE detector is divided into signal (inner) and
veto (outer) regions as it is shown in Figure 7.16. MiniBooNE is a Cherenkov detector.

Fig. 7.16 The MiniBooNE detector tank from Reference [76]

The neutrino interactions with the carbon nucleus or protons in the mineral oil produce
charged particles (muons, electrons, pions...) which will produce Cherenkov light if they
have sufficient velocity (energy). The cone of light produced by a charged particle projects
to a well-defined pattern on the photomultiplier array.

7.3.1 MiniBooNE data and Monte Carlo predictions

The MiniBooNE collaboration reported cross-sections for νµ -induced charged-current single
π0 production on mineral oil (CH2) over an energy range of 0.5− 2 GeV in Reference
[77]. To do the comparison we chose CH target in NEUT, which is very similar to CH2
(MiniBooNE target). The MiniBooNE flux for this measurements is given in Reference [77].
The MiniBooNE data is controversial since there is a discrepancy [61] with other published
data. We also see some discrepancy for the NEUT predictions with both models in Figure 7.17.
The discrepancy is significant for muon kinematics, and generally the NEUT prediction with
RS-model has better agreement with the MiniBooNE data.
To show the discrepancy is not the pure normalization, especially for the angular distributions,
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Fig. 7.17 MiniBooNE data for CC1π0 sample from Reference [77]. The total cross-section in
terms of energy (top left), the Q2-differential cross-section (top right), the differential cross-
sections as a function of pion kinematics (center), muon kinematics (bottom). Histograms
show NEUT predictions with MK-model (solid-red) and RS-model (dashed-blue).
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we also show the shape comparison in Figure 7.18 for the same MiniBooNE data presented
in Figure 7.17, but the NEUT predictions are normalized to the data.

7.4 Conclusion

The primary purpose of T2K’s Neutrino Interactions Working Group (NIWG group in the
T2K collaboration) is to include new models in NEUT, and to produce uncertainties for
the parameters of the model to be used as inputs to T2K oscillation analyses, and for T2K
cross-section analyses. The fitting tool is used by the NIWG group to constrain model’s
parameters for various interactions [85], and a new model implemented in the NEUT should
be used in a fit to the available data.
The MK-model implemented in the NEUT, is now ready to be used as a single pion produc-
tion model for T2K, and will be included in the next generation NIWG fitting procedure
using the existing framework. For the next step, the model’s parameters (MA and CA

5
2) will

be fitted to the single pion production bubble chamber data, and then cross-section errors
will be estimated using all available single pion production data.
In this chapter, the NEUT prediction with MK-model was compared with the single pion pro-
duction data on nuclear targets, and it shows good agreement with both T2K and MINERνA
data.To show the effects of MK/RS-model replacement, we also presented the current NEUT
prediction which is only different in the single pion production model.
The large discrepancy between the NEUT predictions indicates that the nonresonant back-
ground effect is not negligible and it has significant impact on predictions for single pion pro-
duction especially on pion polar angle as it was discussed in the previous chapters. Comparing
NEUT predictions for CC1π0 sample and neutrino flux between MINERνA (Eν > 1.5 GeV)
and MiniBooNE (Eν < 2 GeV) shows MK-model predicts higher cross-section for higher
energy (MINERνA flux) and less cross-section for lower energy (MiniBooNE flux). The
discrepancy between MK-model and RS-model is less for MiniBooNE flux than MINERνA
flux with larger phase space. This is because both model are fitted to data at low energy
(Eν ≈ 1 GeV). Comparing NEUT predictions for CC1π0 sample between neutrino and
anti-neutrino MINERνA fluxes show although the discrepancy in normalization is larger for
anti-neutrino (this was discussed in section 5.3), but the shape discrepancy is very similar
especially for pion kinematics.

2these are the MK-model’s parameters by now. New parameter(s) might be added to the model by NIWG
group.
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Fig. 7.18 MiniBooNE data for CC1π0 sample from Reference [77]. The total cross-section in
terms of energy (top left), the Q2-differential cross-section (top right), the differential cross-
sections as a function of pion kinematics (center), muon kinematics (bottom). Histograms
show NEUT predictions with MK-model (solid-red) and RS-model (dashed-blue), normalized
to the data.





Chapter 8

Summary and Concluding remarks

The main goal of this thesis was to develop a new single pion production cross-section model.
A motivation is to use it in Monte Carlo simulation in the T2K experiment for precision
measurements of neutrino oscillation. The present (Rein-Sehgal) model in NEUT is not
satisfactory. It is particularly missing a reliable model for nonresonant interaction and its
interference with the resonant interaction. Besides, the model is not implemented completely
for the angular distribution, and for simplicity only ∆ resonance contribute. Therefore the
single pion production model in NEUT is not efficient for simulation. In this work, we
introduced a complete model, including all the effects, in order to get better descriptions.

The model proposed in this work (we call it MK-model) consists of resonant and non-
resonant interactions including the interference effects between all resonances as well as
nonresonant contributions. In chapter 3 the general framework for the helicity amplitude
calculation is provided. This was introduced in References [8, 9] for neglected lepton mass,
but in this chapter the lepton mass is restored. The full kinematic differential cross-section in
terms of helicity amplitudes is also given in this chapter which includes the discussion of
angular distributions. In chapter 4 the helicity amplitudes of the RS-model [7] for resonant
interaction and HNV-model [10] for nonresonant interaction is calculated. For resonant
calculation, we follow up the idea from Reference [9]. THe MK-model has a suitable format
for the neutrino generators.

The resonant interaction has axial form-factor with two unknown parameters, and their
best values were obtained from fitting to the bubble chamber data. we also defined the
resonance’s signs to get the best description of data, where we got different signs for few
resonances compare to the RS-model. Fixing the parameters and the signs of resonances in
the cross-section calculation (CSC) code, we were able to get the numerical values of the
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differential cross-section to compare with the bubble chamber data on light targets. The better
agreements of the MK-model with data compare to NEUT5.3.6 (especially for anti-neutrino
channels) presented in the chapter 5, confirmed that the model is doing a good job, and we
will probably see less systematic error in the next T2K analysis.

The full kinematic cross-section, dσ/dWdQ2dΩ, which is the output of MK-model is
implemented in NEUT for all CC and NC (anti-)neutrino channels. In chapter 6, we com-
pared various differential cross-sections predicted by NEUT 5.3.6 (RS-model), and NEUT
with the MK-model. The comparisons have been done for several channels on free nucleon
and few samples on CH target, and they clearly show discrepancy in shape and normalization.
The disagreements is significant for the pion kinematics due to the interference effects and
the simplified implementation (for pion angles1) of the RS-model in the current NEUT.

The MK-model is successfully implemented in the NEUT and all necessary checks were
done as described in the chapter 6, and it is ready to be used for the future T2K analyses,
However there are still more tests that should be done within the T2K collaboration, particu-
larly the free parameters of the MK-model needs to be fitted to other data available for the
single pion production. This is going to be done with the T2K software as it was done before
for the presently used models in NEUT.

In chapter 7 we presented the first comparisons between NEUT predictions with the
RS-model (NEUT5.3.6) and the MK-model and recent data on the nuclear targets. The
results show that the discrepancy between two models is clearly visible even after the nuclear
effects and the kinematic cuts. The value for χ2 in each comparison shows better agreements
for Mk-model with the T2K and MINERνA data.

The Neutrino Interactions Working Group (NIWG group in the T2K collaboration) is
responsible for providing central values and uncertainties for the cross-section parameters
which are used in the oscillation analyses. There are currently 22 cross-section parameters for
all models in the NEUT where three of them are related to the single pion production model.
The better agreements between NEUT and the data constrain the cross-section systematics
which is used for systematic error estimation in oscillation fits.

1In the current NEUT, pion angles are implemented separately (they are not included in the cross-section
formula) and only includes the ∆ resonance.
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interference with the resonant interaction. Besides, the model is not implemented completely
for the angular distribution, and for simplicity only ∆ resonance contribute. Therefore the
single pion production model in NEUT is not efficient for simulation. In this work, we
introduced a complete model, including all the effects, in order to get better descriptions.

The model proposed in this work (we call it MK-model) consists of resonant and non-
resonant interactions including the interference effects between all resonances as well as
nonresonant contributions. In chapter 3 the general framework for the helicity amplitude
calculation is provided. This was introduced in References [8, 9] for neglected lepton mass,
but in this chapter the lepton mass is restored. The full kinematic differential cross-section in
terms of helicity amplitudes is also given in this chapter which includes the discussion of
angular distributions. In chapter 4 the helicity amplitudes of the RS-model [7] for resonant
interaction and HNV-model [10] for nonresonant interaction is calculated. For resonant
calculation, we follow up the idea from Reference [9]. THe MK-model has a suitable format
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The resonant interaction has axial form-factor with two unknown parameters, and their
best values were obtained from fitting to the bubble chamber data. we also defined the
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resonances compare to the RS-model. Fixing the parameters and the signs of resonances in
the cross-section calculation (CSC) code, we were able to get the numerical values of the
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differential cross-section to compare with the bubble chamber data on light targets. The better
agreements of the MK-model with data compare to NEUT5.3.6 (especially for anti-neutrino
channels) presented in the chapter 5, confirmed that the model is doing a good job, and we
will probably see less systematic error in the next T2K analysis.

The full kinematic cross-section, dσ/dWdQ2dΩ, which is the output of MK-model is
implemented in NEUT for all CC and NC (anti-)neutrino channels. In chapter 6, we com-
pared various differential cross-sections predicted by NEUT 5.3.6 (RS-model), and NEUT
with the MK-model. The comparisons have been done for several channels on free nucleon
and few samples on CH target, and they clearly show discrepancy in shape and normalization.
The disagreements is significant for the pion kinematics due to the interference effects and
the simplified implementation (for pion angles1) of the RS-model in the current NEUT.

The MK-model is successfully implemented in the NEUT and all necessary checks were
done as described in the chapter 6, and it is ready to be used for the future T2K analyses,
However there are still more tests that should be done within the T2K collaboration, particu-
larly the free parameters of the MK-model needs to be fitted to other data available for the
single pion production. This is going to be done with the T2K software as it was done before
for the presently used models in NEUT.

In chapter 7 we presented the first comparisons between NEUT predictions with the
RS-model (NEUT5.3.6) and the MK-model and recent data on the nuclear targets. The
results show that the discrepancy between two models is clearly visible even after the nuclear
effects and the kinematic cuts. The value for χ2 in each comparison shows better agreements
for Mk-model with the T2K and MINERνA data.

1In the current NEUT, pion angles are implemented separately (they are not included in the cross-section
formula) and only includes the ∆ resonance.
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Convention

The four vectors are:

xµ =
(

x0, x
)

contravariant

xµ =
(

x0, −x
)

covariant (A.0)

where xµ = ηµνxν , and η is our metric:

η
µ,ν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (A.0)

Therefore, the four-vector contraction is:

xµxµ = x2
0 −x2. (A.0)

For all on-shell particles with mass m and momentum p we have following relation for
four-momentum:

pµ =
(

E(p), p
)
=
(√

p2 +m2, p
)

(A.0)

Therefore pµ pµ = m2.

A.0.1 Dirac Equation and Dirac matrices

Free Dirac equation of motion is:

(i ̸ ∂ −M)ψ(x) = 0 (A.0)
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where ̸ ∂ = γµ∂µ , and in this thesis we generally have ̸ A = γµAµ . Dirac matrices are:

γ
0 =

(
12 0
0 −12

)
, γ

k =

(
0 σ k

−σ k 0

)
, γ

5 =

(
0 12

12 0

)
(A.1)

where σ k are 2×2 Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, 12 =

(
1 0
0 1

)
. (A.2)

{γ
µ ,γν} = 2η

µν (A.3)

Dirac equation in momentum space is:

(i ̸ p−M)us(p) = 0

(i ̸ p+M)vs(p) = 0, (A.3)

and Dirac spinors are the solution of this equation:

us(p) =
√

E(p)+M

(
χs

σσσ .p
E(p)+M χs

)

vs(p) =
√

E(p)+M

(
σσσ .p

E(p)+M χs

χs

)
(A.3)

where χs are Pauli spinors with two components, and

σσσ = σ⃗ = σ1 î+σ2 ĵ+σ3k̂. (A.3)

Dirac spinors are normalized as follows:

ūs(p)u′s(p) =−v̄s(p)v′s(p) = 2Mδss′ (A.4)

A.0.2 Isospin Operators

• Nucleon and isospin 1/2 resonances
The proton and neutron (like all isospin 1/2 resonances) form an isospin SU(2) doublet:

|p⟩=
(

1
0

)
, |n⟩=

(
0
1

)
(A.4)
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The isospin matrices form a vector in isospin space:

τττ =
(

τ1,τ2,τ3

)
(A.4)

where τk are Pauli matrices given in Eq. A.2. Proton and neutron have isospin 1
2 and

-1
2 respectively. We can define

τ± =
1
2
(τ1 ± iτ2) (A.4)

to change the isospin

τ−|p⟩= |n⟩, τ+|n⟩= |p⟩, τ+|p⟩= τ−|n⟩= 0 (A.4)

• Pions
Pion fields can be defined in Cartesian isospin coordinate:

φφφ =
(

φ1,φ2,φ3

)
(A.4)

We can also define
φ± =

1√
2
(φ1 ± iφ2), φ0 = φ3, (A.4)

where φ− creates a π− or annihilate a π+, and φ+ creates a π+ or annihilate a π−. Its
scalar product with the isospin 1/2 matrix is:

τττ.φφφ = τ1φ1 + τ2φ2 + τ3φ3 =
√

2(τ+φ−+ τ−φ+)+ τ3φ0. (A.4)

A.0.3 Isospin structure of hadron current

We can decompose the hadron currents to different isospins1:

⟨ Nπ| JV
ρ |N ⟩=a(+)V (+)

ρ +a(−)V (−)
ρ

⟨ Nπ| JA
ρ |N ⟩=a(+)A(+)

ρ +a(−)A(−)
ρ

1Isospin convention is from Reference [8]
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where

a(±) = χ
†
2 ψπ

†
c

1
2
(τcτd ± τdτc)ψW dχ1.

Here χ1 and χ2 are nucleon isospinors and ψφ isospin matrix of final pion :

ψφ =
1√
2

 1
±i
0

 For π
±, ψφ =

0
0
1

 For π
0

ψW describes the isospin character of the weak currents:

ψW =
1
2

1
i
0

 For W+, ψW =
1
2

0
0
1

 For Z0

It is useful to introduce linear combination of V (±)
ρ and A(±)

ρ to V (1/2,3/2)
ρ and A(1/2,3/2)

ρ which
describe transitions to pure isospin states of pion and nucleon.

a(+)V (+)
ρ +a(−)V (−)

ρ =a(1/2)V (1/2)
ρ +a(3/2)V (3/2)

ρ

V (1/2)
ρ =V (+)

ρ +2V (−)
ρ , V (3/2)

ρ =V (+)
ρ −V (−)

ρ

a(1/2) =
1
3
(a(+)+a(−)) , a(3/2) =

1
3
(2a(+)−a(−)).

The numerical values of the isospin matrix elements for different SPP channels are given in
Table A.1. Using isospin symmetry you can find all charged current interaction in terms of
two of them. For example:

⟨pπ
0|JCC|n⟩=− 1√

2

[
⟨pπ

+|JCC|p⟩−⟨nπ
+|JCC|n⟩

]
.

We can also have:

ψ̄uψd = ψ̄q
τ+√

2
ψq where ψq =

(
ψu

ψd

)
,
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Table A.1 Isospin Clebsch-Gordan coefficients for CC and NC (anti-)neutrino channels.

ν Channels ν̄ Channels a(+) a(−) a1/2 a3/2

ν p → l−pπ+ ν̄n → l+nπ− 1√
2

− 1√
2

0 1√
2

νn → l−pπ0 −(ν̄ p → l+nπ0) 0 1 1
3 −1

3

νn → l−nπ+ ν̄ p → l+pπ− 1√
2

1√
2

√
2

3
1

3
√

2

ν p → ν pπ0 ν̄ p → ν̄ pπ0 1
2 0 1

6
1
3

ν p → νnπ+ ν̄ p → ν̄nπ+ 0 1√
2

1
3
√

2
−

√
2

3

νn → νnπ0 ν̄n → ν̄nπ0 1
2 0 1

6
1
3

νn → ν pπ− ν̄n → ν̄ pπ− 0 − 1√
2

− 1
3
√

2
1

3
√

2

therefore the matrix elements of the isovector part of electromagnetic current (sµ

IV = ψ̄qγµ τ3
2 ψq)

are related to the charged current interaction from Table A.1:

⟨pπ
+|JV

CC|p⟩=
√

2⟨nπ
0|sIV |n⟩+ ⟨pπ

−|sIV |n⟩
⟨nπ

+|JV
CC|n⟩=

√
2⟨pπ

0|sIV |p⟩−⟨pπ
−|sIV |n⟩.

For isoscalar operators (sµ

IS =
1
2ψ̄qγµψq) you only need to replace τ3 with 12 for τd in Eq.

A.0.3. and as a result a minus will be multiplied to νn → νnπ0 and νn → ν pπ− isospin
coefficients given in Table A.1.
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Pauli Spinors in the Isobaric frame

We need to define the Spinors of fermions like leptons and nucleon. they can be define when
the the momentum of fermions (p) are fixed in the framework (isobaric frame in this case)

p̂.s |λ ⟩= h̄λ |λ ⟩ ⇒ p̂.σ |λ ⟩= λ |λ ⟩ (B.1)

Fig. (B.1) and Fig. (B.2) show the momentum of fermions in the isobaric frame. Knowing
their unit vector we can calculate spinors.

Fig. B.1 Lepton’s momentums in
the isobaric frame.

Fig. B.2 hadron’s momentums in
the isobaric frame.

• Incident neutrino

k̂1 = sinδ1x̂+ cosδ1ẑ (B.2)
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k̂1.σ |λ ⟩=
(

cosδ1 sinδ1

sinδ1 −cosδ1

)
|λ ⟩= λ |λ ⟩ (B.3)

The eigenvalues are λ = ± related to the right and left helicities. Neutrino is left
handed, therefore(

cosδ1 sinδ1

sinδ1 −cosδ1

)(
a
b

)
=−

(
a
b

)
. (B.4)

we can calculate a and b and the neutrino’s spinor is

|↓⟩
ν
=

(
−sinδ1/2
cosδ1/2

)
. (B.5)

• Outgoing lepton

k̂2 = sinδ2x̂− cosδ2ẑ (B.6)

k̂2.σ |λ ⟩=
(
−cosδ2 sinδ2

sinδ2 cosδ2

)(
a
b

)
=±

(
a
b

)
(B.7)

|↓⟩l =

(
cosδ2/2
−sinδ2/2

)
, |↑⟩l =

(
sinδ2/2
cosδ2/2

)
. (B.8)

• incoming nucleon

p̂1 =−ẑ ⇒ p̂1.σ =

(
−1 0
0 1

)
, (B.9)

and the eigenvectors are:

|↓⟩N1
=

(
−1
0

)
, |↑⟩N1

=

(
0
1

)
. (B.10)
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• Outgoing nucleon

p̂2 =−sinθ cosφ x̂− sinθ sinφ ŷ− cosθ ẑ, (B.11)

p̂2.σ =

(
−cosθ −sinθe−iφ

−sinθeiφ cosθ

)
, (B.12)

and the eigenvectors are:

|↓⟩N2
=

(
cosθ/2e−iφ

sinθ/2

)
, |↑⟩N2

=

(
sinθ/2

−eiφ cosθ/2

)
. (B.13)
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Lepton Current

The general form of lepton currents are defined in section 3.1:

ε
α

λ
= ūlλ (k2,s2)γ

α(1− γ5)uνL(k1,s1), (C.1)

where λ is the helicity1, k1(2) and s1(2) are the momentum and spin on incoming (outgoing)
leptons respectively. Dirac matrices are:

γ
0 =

(
I2 0
0 −I2

)
, γ

k =

(
0 σ k

−σ k 0

)
, γ

5 =

(
0 I2

I2 0

)
(C.2)

where σ k are 2×2 Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, I2 =

(
1 0
0 1

)
. (C.3)

Dirac spinors are uλ (ki,si) = Ni

(
χsi,λ

σσσ .ki
k0i+mi

χsi,λ

)
, with normalization Ni =

√
Ei +mi for

i = 1,2, where χsi are Pauli spinors.

ūlλ (k2,s2)γ
α = N∗

2

(
χ

†
(s2,λ )

, χ
†
(s2,λ )

σσσ .k2

k02 +ml

)
γ

0
γ

α (C.4)

(if α = 0) = N∗
2

(
χ

†
(s2,λ )

, χ
†
(s2,λ )

σσσ .k2

k02 +ml

)
(C.5)

(if α = j) = N∗
2

(
χ

†
(s2,λ )

σσσ .k2

k02 +ml
σ

j , χ
†
(s2,λ )

σ
j
)

(C.6)

1uνL is neutrino spinor and left handed.
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Fig. C.1 Lepton momentum in Isobaric frame

and

(1− γ5)uνL(k1,s1) = N1

(
(1− σσσ .k1

k01
)χs1

−(1− σσσ .k1
k01

)χs1

)
.

Therefore

ε
0
λ

= N1N∗
2 χ

†
(s2,λ )

(
1− σσσ .k2

k02 +ml

)(
1− σσσ .k1

k01

)
χs1, (C.7)

ε
j

λ
= N1N∗

2 χ
†
(s2,λ )

(
1− σσσ .kkk2

k02 +ml

)(
−σ

j) (1− σσσ .k1

k01

)
χs1 . (C.8)

We can calculate ε0
λ

and ε
j

λ
in isobaric frame (Fig. C.1) where

k = k1 −k2 = |k|ẑ.

It is convenient to neglect y comonents, i.e. k1y = k2y = 0, therefore:

k1x = k2x,

|k| = |k1z − k2z|. (C.7)

For incoming neutrino (mν = 0):

k2
1x + k2

1z = k2
01

(
k1x

k01
)2 +(

k1z

k01
)2 = 1, (C.7)



165

and for outgoing lepton with ml ̸= 0:

k2
2x + k2

2z = k2
02 −m2

l = p2
l

(
k2x

pl
)2 +(

k2z

pl
)2 = 1. (C.7)

where
k1x

k01
= sinδ1,

k1z

k01
= cosδ1,

k2x

pl
= sinδ1,

k2z

pl
= −cosδ1. (C.8)

Now we can calculate ε0 by knowing the Pauli spinors (Appendix B) and pauli matrices:

ε
0
λ

= N1N∗
2 χ

†
(s2,λ )

(
1− σσσ .k2

k02 +ml

)(
1− σσσ .k1

k01

)
χs1 (C.9)

(
1− σσσ .k1

k01

)
χs1 =

(
1− k1z

k01
− k1x

k01

− k1x
k01

1+ k1z
k01

)
χs1

=

(
1− cosδ1 −sinδ1

−sinδ1 1+ cosδ1

) (
−sinδ1/2
cosδ1/2

)
(C.9)

=

(
−2sinδ1/2
2cosδ1/2

)
(C.10)

and

χ
†
(s2,λ )

(
1− σσσ .k2

k02 +ml

)
= χ

†
(s2,λ )

(
1− k2z

k02+ml
− k2x

k02−ml

− k2x
k02+ml

1+ k2z
k02+ml

)
. (C.10)

For left handed lepton:

=
(

cosδ2/2 −sinδ2/2
) 1+

(
k02−ml
k02+ml

)1/2
cosδ2 −

(
k02−ml
k02+ml

)1/2
sinδ2

−
(

k02−ml
k02+ml

)1/2
sinδ2 1−

(
k02−ml
k02+ml

)1/2
cosδ2


=

(
1+

√
k02 −ml

k02 +ml

) (
cosδ2/2 −sinδ2/2

)
(C.10)
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and for right handed lepton, Equation C will be:

=
(

sinδ2/2 cosδ2/2
) 1+

(
k02−ml
k02+ml

)1/2
cosδ2 −

(
k02−ml
k02+ml

)1/2
sinδ2

−
(

k02−ml
k02+ml

)1/2
sinδ2 1−

(
k02−ml
k02+ml

)1/2
cosδ2


=

(
1−
√

k02 −ml

k02 +ml

) (
sinδ2/2 cosδ2/2

)
(C.10)

Therefore:

ε
0
L = N1N∗

2

(
1+

√
k02 −ml

k02 +ml

) (
cosδ2/2 −sinδ2/2

)(−2sinδ1/2
2cosδ1/2

)

= −2
√

2k01(k02+ pl) sin
(

δ1

2
+

δ2

2

)
= −2

√
2k01(k02+ pl)

√
1− cos(δ1 +δ2)

2
= −2

√
k01(k02+ pl)

√
1+ cosδ , (C.8)

ε
0
R = N1N∗

2

(
1−
√

k02 −ml

k02 +ml

) (
sinδ2/2 cosδ2/2

)(−2sinδ1/2
2cosδ1/2

)

= 2
√

2k01(k02− pl) cos
(

δ1

2
+

δ2

2

)
= 2

√
2k01(k02− pl)

√
1+ cos(δ1 +δ2)

2
= 2

√
k01(k02− pl)

√
1− cosδ , (C.6)

where δ = π − (δ1 + δ2), the angle between leptons in the isobaric frame. We can do the
same calculation for ε

j
λ

ε
j

λ
= N1N∗

2 χ
†
(s2,λ )

(
1− σσσ .kkk2

k02 +ml

)(
−σ

j) (1− σσσ .k1

k01

)
χs1 (C.7)
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ε
1
L = −N1N∗

2

(
1+

√
k02 −ml

k02 +ml

) (
cosδ2/2 −sinδ2/2

)(0 1
1 0

)(
−2sinδ1/2
2cosδ1/2

)

= −2
√

2k01(k02+ pl) cos
(

δ2

2
− δ1

2

)
= −2

√
k01(k02+ pl)

√
1+ cos(δ2 −δ1)

= −2
√

k01(k02+ pl)

√
1− k1z

k01

k2z

pl
+

k1x

k01

k2x

pl

=
−2√
2k01 pl

√
k01(k02+ pl)

√
2k01 pl −2k1zk2z +2k1xk2x (C.4)

After some simplification via Equation C.8

ε
1
L =

−2√
2k01 pl

√
k01(k02+ pl)

(k01 + pl)

|k|
√

(k1z − k2z)2 − (k01 − pl)2

= −2
√

k01(k02 + pl)
(k01 + pl)

|k|

√
1− k1z

k01

k2z

pl
− k1x

k01

k2x

pl

= −2
√

k01(k02 + pl)
(k01 + pl)

|k|
√

1+ cos(δ1 +δ2)

= −2
√

k01(k02 + pl)
(k01 + pl)

|k|
√

1− cosδ . (C.2)

Similarly

ε
2
L = 2i

√
2k01(k02 + pl) cos

(
δ1

2
+

δ2

2

)
= 2i

√
k01(k02 + pl)

√
1− cosδ , (C.2)

ε
3
L = 2

√
2k01(k02+ pl) sin

(
δ1

2
− δ2

2

)
= −2

√
k01(k02 + pl)

|k01 − pl|
|k|

√
1+ cosδ (C.2)
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and for right handed ε
j

R:

ε
1
R = 2

√
2k01(k02 − pl) sin

(
δ1

2
− δ2

2

)
= 2

√
k01(k02 − pl)

(k01 − pl)

|k|
√

1+ cosδ (C.2)

ε
2
R = 2i

√
2k01(k02 − pl) sin

(
δ1

2
+

δ2

2

)
= 2i

√
k01(k02 − pl)

√
1+ cosδ (C.2)

ε
3
R = 2

√
2k01(k02 − pl) cos

(
δ1

2
+

δ2

2

)
= 2

√
k01(k02 − pl)

(k01 + pl)

|k|
√

1− cosδ . (C.2)



Appendix D

Linear Transformation Between
Invariant and Isobar Frame Amplitudes

Helicity amplitudes in Equation 3.49 - 3.56 are related to Fi and Gi. We give here the linear
transformations relating the isobaric frame amplitudes and invariant amplitudes (Vk and Ak).
Equation 3.30 shows O(Vk) and O(Ak) in terms of Pauli matrices by using the following
relations:

γ
0
γ

k = σ
k

(
0,12

12,0

)
γ

i
γ

j = −σ
i
σ

j14 (D.0)

where γµ are Dirac matrices and given in Appendix C. First we show detailed derivation for
O(A1) that has been given in Eq. (3.30).

O(A1) =
1
2
[(γq)(γε)− (γε)(γq)]

=
1
2

[
(γ0q0 − γ

kqk)(γ
0
ε0 − γ

j
ε j)− (γ0

ε0 − γ
j
ε j)(γ

0q0 − γ
kqk)

]
=

1
2

[
q0ε0 − γ

k
γ

0qkε0 − γ
0
γ

jq0ε j + γ
k
γ

jqkε j

]
=− 1

2

[
ε0q0 − γ

0
γ

k
ε0qk − γ

j
γ

0
ε jq0 + γ

j
γ

k
ε jqk

]
.
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Using Equation D.1

O(A1) =
1
2

[
2γ

0
γ

k
ε0qk +2γ

j
γ

0
ε jq0 + γ

k
γ

jqkε j + γ
k
γ

j
ε jqk + 2⃗ε .⃗q

]
=
[
(⃗q.⃗σ)ε0 − (⃗ε .⃗σ)q0](0,12

12,0

)
+[(⃗ε .⃗q)− (σ⃗ .⃗q)(σ⃗ .⃗ε)]14

where σ⃗ = σ1î+σ2 ĵ+σ3k̂, and σk are Pauli matrices.
Fk and Gk can be found by equating the right hand sides of Equation 3.27 and Equation 3.29
for both vector and axial parts, therefore first we need to rewrite Equation 3.27 in terms
of Pauli spinors and matrices (Appendix A). Here we will calculate Gk related to O(A1)

contribution, but first we introduce new conventions and useful relations for the derivation:

O1± =
[
(W 2

±− k2)(W 2
±−m2

π)
] 1

2 /2W = [(p10 ±M)(P20 ±M)]1/2

O2± =
[
(W 2

±− k2)/(W 2
±−m2

π)
] 1

2 =

(
p10 ±M
p20 ±M

)1/2

O1± =|q|
(

p10 ±M
p10 ∓M

)1/2

O2±

1
O2±

=

(
p20 ±M
p10 ±M

)1/2

=
|p2|
|p1|

O2∓ =
|q|
|k|O2∓ =

1
|k|

(
p10 ∓M
p10 ±M

)1/2

O1±

where W± =W ±M, and (p1 + p2)k+qk =W+W−.

Dirac spinors for nucleons are u(pi,si) = Ni

(
χsi

σ⃗ .p⃗i
p0i+M χsi

)
, with normalization Ni =

√
Ei +M for i = 1,2, where χsi are Pauli spinors. Using this we start with axial part of

Equation 3.27 for k = 1 with the help of Eq. D.

A1ū(p2,s2)O(A1)u(p1,s1) =

A1N1N2

{
χ

†
s2

[[
(⃗q.⃗σ)ε0 − (⃗ε .⃗σ)q0] σ⃗ .p⃗1

p01 +M
− σ⃗ .p⃗2

p02 +M

[
(⃗q.⃗σ)ε0 − (⃗ε .⃗σ)q0]]

χs1

+χ
†
s2

[
[(⃗ε .⃗q)− (σ⃗ .⃗q)(σ⃗ .⃗ε)]− σ⃗ .p⃗2

p02 +M
[(⃗ε .⃗q)− (σ⃗ .⃗q)(σ⃗ .⃗ε)]

σ⃗ .p⃗1

p01 +M

]
χs1

}

= A1χ
†
s2

{[
(⃗q.⃗σ)ε0 − (⃗ε .⃗σ)q0](−|q|O2−k̂.⃗σ

)
+
[
(⃗q.⃗σ)ε0 − (⃗ε .⃗σ)q0](|q|O2+q̂.⃗σ)

+ [(⃗ε .⃗q)− (σ⃗ .⃗q)(σ⃗ .⃗ε)]O1+−O1−(⃗ε .⃗q)(q̂.⃗σ)(k̂.⃗σ)+O1−|q|(⃗ε .⃗σ)(k̂.⃗σ)

}
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using O1± = O2±(p02 ±M)

= A1χ
†
s2

{[
(⃗ε .⃗q)O1++ |q|2ε0O2+

]
−
[
(⃗ε .⃗q)O1−+ |q|2ε0O2−

]
(σ⃗ .q̂)(σ⃗ .k̂)

−(σ⃗ .q̂)(σ⃗ .⃗ε)|q| [q0O2++(p02 +M)O2+]+ (σ⃗ .k̂)(σ⃗ .⃗ε)|q| [q0O2−+(p02 −M)O2−]
}

χs1

= A1χ
†
s2

{
−|q|O2+W+(σ⃗ .q̂)(σ⃗ .⃗ε)+ |q|O2−W−(σ⃗ .k̂)(σ⃗ .⃗ε)

+O1+ [(⃗ε .⃗q)+ ε0(p02 −M)]−O1− [(⃗ε .⃗q)+ ε0(p02 +M)] (σ⃗ .q̂)(σ⃗ .⃗k)
}

χs1

Now we define ∆ = k0(q0k0 − (qk))k2 and we use an auxiliary term which is zero:

C = O1+

{[
−|k|

k0
(p02 −M)−

√
p01 −M
p01 +M

W−− (⃗q.k̂)

]
+

|k|
k0

[
∆+ p02 −M+

k0W−
p01 +M

]}

−O1−

{
−
[
|k|
k0

(p0 +M)+

√
p01 +M
p01 −M

W++(⃗q.k̂)

]
+

|k|
k0

[
∆+ p02 +M+

k0W+

p01 −M

]}
(σ⃗ .q̂)(σ⃗ .k̂)

C = 0, therefore we can add C(k̂.⃗ε) to Eq. D.

= A1χ
†
s2

{
−|q|O2+W+(σ⃗ .q̂)(σ⃗ .⃗ε)+ |q|O2−W−(σ⃗ .k̂)(σ⃗ .⃗ε)

+O1+

[
|q|
(
(⃗ε.q̂)− (q̂.k̂)(k̂.⃗ε)

)
+

kε

k0
(p02 −M)−

√
p01 −M
p01 +M

W−(k̂.⃗ε)

+
|k|
k0

(
∆+ p02 −M+

k0W−
p01+M

)
(k̂.⃗ε)

]
−O1−

[
|q|
(
(⃗ε.q̂)− (q̂.k̂)(k̂.⃗ε)

)
+

kε

k0
(p02 +M)−

√
p01 +M
p01 −M

W+(k̂.⃗ε)

+
|k|
k0

(
∆+ p02 +M+

k0W+

p01+M

)
(k̂.⃗ε)

]
(σ⃗ .q̂)(σ⃗ .k̂)

}
χs1

= A1χ
†
s2

{
|q|O2+W+Λ1 + |q|O2−Λ2 + |q|O1−Λ3 −|q|O1+Λ4

+O1− (∆+P20 +M+ k0W+/(p01 −M))Λ5 −O1+ (∆+P20 −M+ k0W−/(p01 +M))Λ6

+O1−(P02 +M)Λ7 −O1+(P02 −M)Λ8

}
χs1
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From Eq. D we can extract Gk, but only terms related to A1. One needs to calculate all terms
related to Ak and Vk.
Here we summarize Fi and Gi in terms of Vk and Ak

Fi = KV
i .Fi

Gi = KA
i .Gi, (D.-23)

where
KV

1 =W−O1+

KV
2 =W+O1−

KV
3 = q2W+O2−

KV
4 = q2W+O2−

KV
5 = 1/O2+

KV
6 = 1/O2−

(D.-23)

and
KA

1 = |q|O2+

KA
2 = |q|O2−

KA
3 = |q|O1−

KA
4 = |q|O1+

KA
5 = O1−

KA
6 = O1+

KA
7 = O1−

KA
8 = O1+

(D.-23)

For vector part

F1 =V1 +(V3 −V4)(qk)/W−+V4W−−V6k2/W− ,

F2 =−V1 +(V3 −V4)(qk)/W++V4W+−V6k2/W+ ,

F3 =V3 −V4 +V25/W+ ,

F4 =V3 −V4 −V25/W− ,

F5 =V1(W 2
+− k2)/2W −V2(qk)(W 2

+− k2 +2WW−)/2W +(V3 −V4)(W+q0 − (qk))

+V4(W 2
+− k2)W−/2W −V5(qk)k0 −V6(W 2

+− k2)W−/2W +q0V25 ,

F6 =−V1(W 2
−− k2)/2W +V2(qk)(W 2

+− k2 +2WW−)/2W +(V3 −V4)(W−q0 − (qk))

+V4(W 2
−− k2)W+/2W +V5(qk)k0 −V6(W 2

−− k2)W+/2W −q0V25 ,

(D.-22)
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and for axial part of Eq: (D.-23) are

G1 =W+A1 −MA4 ,

G2 =−W−A1 −MA4 ,

G3 = A1 +A2 −A3 +(A5 −A6)W+ ,

G4 =−A1 −A2 +A3 +(A5 −A6)W− ,

G5 =
[
∆+(W 2

+−m2
π)/2W +2Wk0W+/(W 2

−− k2)
]

A1 +(∆+ p02 +W )A2 +(q0 −∆)A3

−M [W−/(p01 −M)]A4 +W+ [(∆+ p02 +W )A5 +(q0 −∆)A6] ,

G6 =−
[
∆+(W 2

−−m2
π)/2W +2Wk0W−/(W 2

+− k2)
]

A1 +(∆+ p02 +W )A2 − (q0 −∆)A3

−M [W+/(p01 +M)]A4 +W− [(∆+ p02 +W )A5 +(q0 −∆)A6] ,

G7 = (W 2
+−m2

π)A1/2W +(p01 + p02)A2 +q0A3 −MA4 + k0A7

+W+ [(p01 + p02)A5 +q0A6 + k0A8] ,

G8 =−(W 2
−−m2

π)A1/2W − (p01 + p02)A2 −q0A3 −MA4 − k0A7

+W− [(p01 + p02)A5 +q0A6 + k0A8] ,

(D.-21)

where

V25 = W+W−V2 + k2V5

∆ = k0(q0k0 − (qk))k2. (D.-21)





Appendix E

General Cross-section expression

The general expression of the differential cross section for the collision of two particles
(i = 1,2) and N outgoing particles ( f = 1, ...,N) is given as:

dσ =
(2π)4

4[(p1.p2)2 −m2
1m2

2]
1/2 δ

4
(
∑

f
p f −∑

i
pi

) (
∏

f

d3 p f

(2π)32p0

)
|M |2, (E.1)

where for particles on their mass shell

d3 p
(2π)32p0 =

p2dpdΩ

(2π)32p0 =
1

(2π)3

√
p02 −m2

2
d p0dΩ. (E.2)

For single pion production

ν(k1)+N(p1)→ l(k2)+N(p2)+π(q), (E.3)

N = 3, and the differential cross-section is :

dσ =
(2π)4

4(k1.p1)
δ

4(k2 + p2 +q− k1 − p1)
d3 p2

(2π)32p0
2

d3k2

(2π)32k0
2

d3q
(2π)32q0 |M |2,(E.4)

(E.5)

where [(p1.p2)
2 −m2

1m2
2] is invariant and it is easier to calculate it in the lab frame where

nucleon is at rest and neutrino is massless.
d3k2

(2π)32k0
2

is also invariant and can be calculated in the lab frame:

[
d3k2

(2π)32k02

]
Lab

=
|k2L|2
2kL

02
d|k2L|dΩk2L =

|k2L|
2

dkL
02dφk2Ld cosδk2L . (E.6)



176 General Cross-section expression

dkL
02 =

W
M dk0

2, where k02 is the lepton energy in the isobaric frame, and

Q2 =−(k1L − k2L)
2 = m2

l −2k0
1Lk0

2L +2|k1L||k2L|cosδk2L

⇒ dQ2 = 2|k1L||k2L| d cosδk2L . (E.6)

Therefore:

d3k2

(2π)32k02
=

|k2L|
2

W
M

dk02dφk2L

1
2|k1L||k2L|

dQ2 (E.7)

Substituting Equation E.7 in Equation E.4, and using k1 −k2 +p1 = 0 in the isobaric frame
we will have:

dσ =
2π

4MEν

δ (k02 + p02 +q0 − k01 − p01)δ
3(p2 +q)

d3 p2

(2π)32p02

d3q
(2π)32q0

×
(

1
4Eν

W
M

dk02dφk2LdQ2
)
|M |2. (E.7)

In the isobaric frame p2 +q = 0 ⇒ p02 =
√
|q|2 +M2, and we can integrate over d3

p2
:

dσ =
2π

4MEν

1
(2π)3

1
4

δ

[
(k02 − k01 − p01)+

√
|q|2 +M2 +

√
|q|2 +m2

π

]
√

|q|2 +M2 .
√
|q|2 +m2

π

× |q|2d|q| d|Ωπ

(2π)3

(
1

4Eν

W
M

dk02dφk2LdQ2
)
|M |2. (E.7)

W =
√

|q|2 +M2 +
√

|q|2 +m2
π ⇒ dW =

W |q|d|q√
|q|2 +M2

√
|q|2 +m2

π

(E.8)

Therefore:

dσ =
2π

4MEν

1
(2π)6

|q|
4

δ (k02 − k01 − p01 +W )
1

4Eν

W
M

dW
W

× dk0
2dφk2LdQ2d|Ωπ |M |2. (E.8)

Now we can integrate over dk02 and dφk2

dσ =
1

(2π)4
1

(4MEν)2
|q|
4

dW dQ dΩπ |M |2. (E.9)



Appendix F

Angular Momentum States

To classify the possible polarized states of a particle, we can use the component of spin along
a fixed direction. We can also use the component of spin along the direction of momentum
of the particle, which is called helicity quantum number (λ ). Imagine you have a plane-wave
solution for a free particle with momentum p and energy E. If m ̸= 0, there are 2s+1 linearly
independent states with definite helicity:

λ = s,s−1, ...,−s+1,−s.

if m = 0 then λ =±s. These states characterized by p and λ , form a complete orthogonal
set of states for a free particle. They have the following properties:

• λ is invariant under ordinary rotation; i.e. if we apply a rotation to our solutions, we
will obtain states with different p⃗, but same λ . Therefore we can construct states with
definite J for all particles with definite λ .

• λ will flip the signs under a space reflection:

Y ψp,λ = η(−1)s−λ
ψp,−λ

where η is parity, and Eq. F will be derived later.

• Suppose we have states ψpλ with p⃗ = |p|ẑ. Then we can find states with p⃗′ in an
arbitrary direction (θ ,φ ), |p|,θ ,φ ;λ ⟩ with a suitable rotation

|θ ,φ ;λ ⟩= Rφ ,θ ,−φ ψp,λ = eiφλ Rφ ,θ ,0ψp,λ
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where

Rα,β ,γ = exp(−iαJz)exp(−iβJy)exp(−iγJz)

is Euler rotation.

F.1 Two free particles along ẑ direction

For two free particles with (s1,m1) and (s2,m2) in the center of mass frame p⃗1 =−p⃗2 = pẑ.
We can have ψp1,λ1(1) states for particle (1) and ψ ′

p2,λ2
(2) for particle (2).

We can define the product of two states as one state with momentum p⃗ = pẑ, and from Eq.
(F) we have:

ψp,λ1,λ2 = ψpλ1(1)ψ
′
pλ2

(2) = ψpλ1(1)(−1)s2−λ2ψp−λ1(1)

F.2 Two free particles in (θ ,φ) direction

Eq. (F.1) gives us states of two free particle along ẑ. By applying a rotation (Eq. F) on
ψp,λ1,λ2 we can find this system along an arbitrary direction (θ ,φ):

|p,θ ,φ ;λ1,λ2⟩= Rφθ−φ ψpλ1λ2 = eiλφRφθ0ψpλ1λ2 ,

where λ = λ1 −λ2.

F.3 States with definite angular momentum and helicity

Now we can construct states with definite J and its component Jz = M; |p;JM,λ1λ2⟩1.

|p,θ ,φ ;λ1,λ2⟩=Rφθ−φ ψpλ1λ2

=∑
J,M

|p;JM,λ1λ2⟩⟨p;JM,λ1λ2|p,θ ,φ ;λ1,λ2⟩

=∑
J,M

DJ
M,λ (φθ −φ)|p;JM,λ1λ2⟩

1Since the magnitude p and helicities λ1 and λ2 are invariant under rotation, we can assign difinite values to
them, together with J and M
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where λ = λ1 −λ2, and

DJ
M,M′(α,β ,γ) = e−iMα dJ

M,M′(β ) e−iM′γ (F.-1)

is the matrix corresponding to Rαβγ in the irreducible representation DJ , and
√

2 j+1
4π

d j
λ ,µ(θ)e

i(λ−µ)φ

are mutually orthonormal functions where d j
λ ,µ are define in Equation 3.74. Therefore:

∫
dΩDJ′

M′λ ′
∗
(φθ −φ)|p,θ ,φ ;λ1,λ2⟩= ∑

JM

∫
dΩDJ′

M′λ ′
∗
(φθ −φ)DJ

Mλ
(φθ −φ)|p;JM,λ1λ2⟩

=
1
R
|p;JM,λ1λ2⟩.

To calculate the normalization factor R, we use Eq. F.-1, and d j
λ ,µ properties:

∑
JM

∫
dΩDJ′

M′λ ′
∗
(φθ −φ)DJ

Mλ
(φθ −φ)

=∑
JM

∫
dΩeiM′φ d j′

M′λ ′
∗
(θ)e−iλ ′φ e−iMφ dJ

Mλ
(θ)eiλφ =

4π

2 j+1

⇒R=

√
2 j+1

4π

Therefore:

|p;JM,λ1λ2⟩=R

∫
dΩDJ

Mλ

∗
(φθ −φ)|p,θφ ;λ1λ2⟩

From this we can derive reflection (F). Parity (P) is reflection from the origin (xyz →
−x,−y,−z), then a reflection in the xz plane is

Y ψ0,λ = e−iπJyPψ0,λ = η ∑
λ ′

ds
λ ′λ (π)ψ0,λ ′, (F.-4)

where
ds

λ ′λ (π) = (−1)(s−λ )
δλ ′,−λ . (F.-4)

Therefore Equation F.3 will be F.
In order to construct states with definite angular momentum and helicity, we have to have
standard particle’s states if we have more than one particle. In isobaric (Adler) or πN rest
frame (Figure 3.3), incident nucleon spinor (χ1) is at −ẑ direction and should be reflected to
ẑ (the direction of gauge boson), and outgoing nucleon is at (−θ ,−φ) direction and it should
to be changed to (θ ,φ) direction which is outgoing pion direction. This is equivalent to a
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reflection and rotation along ẑ with −2φ = 2π −2φ angle

χλ1 → χ
′
λ1

= (−1)s−λ1 χ−λ1 reflection along ẑ

χ
∗
λ2

→ χ
′∗
λ2

= eiπJyei(2π−2φ)Jz χ
∗
λ2

= (−1)e−2iφ(λ2)(−1)s−λ2 χ
∗
−λ2

reflection along (θ ,φ ) (F.-5)

Then we will have a system of two particles along ẑ for incoming nucleon and gauge boson
(with helicity λk), ψλk−λ1 , and a state for two particles along (θ ,φ ) i.e. outgoing nucleon and
pion (with helicity λq); ψλq −λ2. Therefore for s = 1/2 we have;

Fµλ (θ ,φ) = (−1)−(λ1+λ2)e2iφλ2F̃λk
λ2λ1

(θ ,φ) = ei[λ1π+λ2(π+2φ)]F̃λk
λ2λ1

(θ ,φ)

Gµλ (θ ,φ) = (−1)−(λ1+λ2)e2iφλ2G̃λk
λ2λ1

(θ ,φ) = ei[λ1π+λ2(π+2φ)]G̃λk
λ2λ1

(θ ,φ) (F.-5)

where µ = λπ −λ2 =−λ2 and λ = λk −λ1.



Appendix G

Resonance Production Amplitudes

In this appendix we list all helicity amplitudes for 17 resonances in Table 4.1, given in [7]
and [13]. First we need to define required notation:

TV =T =

√
Ω

3
√

2W
FV (k2)

RV =R =

√
2M
W

(W +M)|kL|
(W +M)2 − k2 FV (k2)

S− =

√
−k2

|kL|2
ε3
−k0 −|k|ε0

−
C−

(
1
6
− k2

6M2 −
W
2M

)
FV (k2)

S+ =

√
−k2

|kL|2
ε3
+k0 −|k|ε0

+

C+

(
1
6
− k2

6M2 −
W
2M

)
FV (k2)

T A =

√
2Ω

3
MkL

W ((W +M)2 − k2)
G(k2)

RA =

√
2

6W

[
W +M+

2nΩW
(W +M)2− k2

]
G(k2)

C− =

√
−k2

C−

[
(ε0

L|k|− k0ε
3
L)(

1
3
+

k0

aM
)

+

(
2
3

W +
k2

aM
+

nΩ

3aM

)[
ε

3
L +(ε0

L − ε
3
L|k|)

|k|
m2

π − k2

]]
GA(k2)

2W |k|

C+ =

√
−k2

C−

[
(ε0

R|k|− k0ε
3
R)(

1
3
+

k0

aM
)

+

(
2
3

W +
k2

aM
+

nΩ

3aM

)[
ε

3
R +(ε0

R − ε
3
R|k|)

|k|
m2

π − k2

]]
GA(k2)

2W |k|
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Table G.1 Angular momentum Clebsch-Gordan coefficients

j l

1
2 l j
1
2 0 1

2

 1
2 l j
1
2 1 1

2

  1
2 l j

−1
2 1 1

2

  1
2 l j

−1
2 2 1

2


1
2 0 +1 0 0 0 j = l + 1

2
3
2 1 +

√
2
3 +1 +

√
1
3 0

5
2 2 +

√
3
5 +

√
4
5 +

√
2
5 +

√
1
5

7
2 3 ... ... ... ...

1
2 1 −

√
1
3 0 +

√
2
3 0 j = l − 1

2
3
2 2 −

√
2
5 −

√
1
5 +

√
3
5 +

√
4
5

5
2 3 ... ... ... ...

where n is a number of oscillators for resonances where n = 0 for ∆ resonance.

Ω =1.05GeV

λ =

√
2
Ω

M
W

|kL|

a =1+
W 2 − k2 +M2

2MW

and

T± =−(TV ±T A)

R± =−(RV ±RA)



Table G.2 Production amplitudes for charged and neutral current weak interaction from Reference [7] .

Resonance Helicity Weak CC Weak NC (p) Weak NC (n)

P33(1232) f−3
√

6R− −
√

6(R−+2xR)
f−1

√
2R− −

√
6(R−+2xR)

f+1 −
√

2R+ −
√

6(R−+2xR)
f+3 −

√
6R+ −

√
6(R−+2xR) n = p

f (−)
0+ −2

√
2C− 2

√
2C−

f (−)
0− −2

√
2C− 2

√
2C−

f (+)
0+ −2

√
2C+ 2

√
2C+

f (+)
0− −2

√
2C+ 2

√
2C+

P11(1440) f−1 −5
6

√
3λ 2R− 5

12

√
3(R−+2x(6

5)R)
5

12

√
3(R−+2x(4

5)R)
f+1 −5

6

√
3λ 2R+ 5

12

√
3(R++2x(6

5)R)
5

12

√
3(R++2x(4

5)R)

f (−)
0+ −

√
3
4 λ 2S−− 5

6

√
3λ (λC−−2B−) −1

2

√
3
4 λ 2S−(1−4x)− 5

12

√
3λ (λC−−2B−) 1

2

√
3
4 λ 2S−+ 5

12

√
3λ (λC−2B−)

f (−)
0− −

√
3
4 λ 2S−+ 5

6

√
3λ (λC−−2B−) −1

2

√
3
4 λ 2S−(1−4x)+ 5

12

√
3λ (λC−−2B−) 1

2

√
3
4 λ 2S−− 5

12

√
3λ (λC−−2B−)

f (+)
0+ −

√
3
4 λ 2S+− 5

6

√
3λ (λC+−2B+) −1

2

√
3
4 λ 2S+(1−4x)− 5

12

√
3λ (λC+−2B+) 1

2

√
3
4 λ 2S++ 5

12

√
3λ (λC+−2B+)

f (+)
0− −

√
3
4 λ 2S++ 5

6

√
3λ (λC+−2B+) −1

2

√
3
4 λ 2S+(1−4x)+ 5

12

√
3λ (λC+−2B+) 1

2

√
3
4 λ 2S+− 5

12

√
3λ (λC+−2B+)

D13(1520) f−3 2
√

9
2 T−

√
9
2(T

−+2xT ) −
√

9
2(T

−+2xT )

f−1
√

6T−− 4√
3
λR−

√
3
2(T

−+2xT )−
√

4
3 λ (R−+2x(3

2)R −
√

3
2(T

−+2xT )+
√

4
3 λ (R−+2x(3

2)R

f+1
√

6T+− 4√
3
λR+

√
3
2(T

++2xT )−
√

4
3 λ (R++2x(3

2)R −
√

3
2(T

++2xT )+
√

4
3 λ (R++2x(3

2)R

f+3 2
√

9
2 T+

√
9
2(T

++2xT ) −
√

9
2(T

++2xT )

f (−)
0+ −2

√
3λS−−

√
4
3 λC− −

√
3λS−(1−2x)− 2√

3
λC− +

√
3λS−(1−2x)+ 2√

3
λC−

f (−)
0− −2

√
3λS−+

√
4
3 λC− −

√
3λS−(1−2x)+ 2√

3
λC− +

√
3λS−(1−2x)− 2√

3
λC−

f (+)
0+ −2

√
3λS+−

√
4
3 λC+ −

√
3λS+(1−2x)− 2√

3
λC+ +

√
3λS−(1−2x)+ 2√

3
λC+



Table G.2 Production amplitudes for charged and neutral current weak interaction from Reference [7] .

Resonance Helicity Weak CC Weak NC (p) Weak NC (n)

f (+)
0− −2

√
3λS++

√
4
3 λC+ −

√
3λS+(1−2x)+ 2√

3
λC+ +

√
3λS−(1−2x)− 2√

3
λC+

S11(1535) f−1 2
√

3T−+ 4√
6
λR− √

3(T−+2xT )+
√

2
3 λ (R−+2x(3

2)R) −
√

3(T−+2xT )−
√

2
3 λ (R−+2x(1

2)R)

f+1 −2
√

3T−− 4√
6
λR− −

√
3(T++2xT )−

√
2
3 λ (R++2x(3

2)R)
√

3(T++2xT )+
√

2
3 λ (R++2x(1

2)R)

f (−)
0+

√
6λS−+2

√
2
3(λC−−3B−)

√
3
2 λS−(1−2x)+

√
2
3(λC−−3B−) −

√
3
2 λS−(1−2x)−

√
2
3(λC−−3B−)

f (−)
0− −

√
6λS−+2

√
2
3(λC−−3B−) −

√
3
2 λS−(1−2x)+

√
2
3(λC−−3B+)

√
3
2 λS−(1−2x)−

√
2
3(λC−−3B−)

f (+)
0+

√
6λS++2

√
2
3(λC+−3B+)

√
3
2 λS+(1−2x)+

√
2
3(λC+−3B+) −

√
3
2 λS+(1−2x)−

√
2
3(λC+−3B−)

f (+)
0− −

√
6λS++2

√
2
3(λC+−3B+) −

√
3
2 λS−(1−2x)+

√
2
3(λC+−3B+)

√
3
2 λS+(1−2x)−

√
2
3(λC+−3B+)

P33(1600) f−3 − 1√
2
λ 2R− 1√

2
(R−+2xR)

f−1 − 1√
6
λ 2R− 1√

6
(R−+2xR)

f+1
1√
6
λ 2R+ − 1√

6
(R++2xR)

f+3
1√
2
λ 2R+ − 1√

2
(R++2xR)

f (−)
0+

√
2
3 λ (λC−−2B−) −

√
2
3 λ (λC−−2B−) n = p

f (−)
0−

√
2
3 λ (λC−−2B−) −

√
2
3 λ (λC−−2B−)

f (+)
0+

√
2
3 λ (λC+−2B+) −

√
2
3 λ (λC+−2B+)

f (+)
0−

√
2
3 λ (λC+−2B+) −

√
2
3 λ (λC+−2B+)

S31(1620) f−1 −
√

3T−+ 1√
6
λR− √

3(T−+2xT )−
√

1
6 λ (R−+2xR)

f+1
√

3T+− 1√
6
λR+ −

√
3(T++2xT )+

√
1
6 λ (R++2xR)

f (−)
0+ −

√
3
2 λS−+

√
1
6(λC−−3B−)

√
3
2 λS−(1−2x)−

√
1
6(λC−−3B−) n = p

f (−)
0−

√
3
2 λS−+

√
1
6(λC−−3B−) −

√
3
2 λS−(1−2x)−

√
1
6(λC−−3B−)

f (+)
0+ −

√
3
2 λS++

√
1
6(λC+−3B+)

√
3
2 λS+(1−2x)−

√
1
6(λC+−3B+)
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Resonance Helicity Weak CC Weak NC (p) Weak NC (n)

f (+)
0− +

√
3
2 λS++

√
1
6(λC+−3B+) −

√
3
2 λS+(1−2x)−

√
1
6(λC+−3B+)

S11(1650) f−1
1√
6
λR− 1

2
1√
6
λR− −1

2

√
1
6 λ (R−+4xR)

f+1 − 1√
6
λR+ −1

2
1√
6
λR+ 1

2

√
1
6 λ (R++4xR)

f (−)
0+ −

√
2
3(λC−−3B−) −

√
1
6(λC−−3B−)

√
1
6(λC−−3B−)

f (−)
0− −

√
2
3(λC−−3B−) −

√
1
6(λC−−3B−)

√
1
6(λC−−3B−)

f (+)
0+ −

√
2
3(λC+−3B+) −

√
1
6(λC+−3B+)

√
1
6(λC+−3B+)

f (+)
0− −

√
2
3(λC+−3B+) −

√
1
6(λC+−3B+)

√
1
6(λC+−3B+)

D15(1675) f−3 −
√

3
5 R− −1

2

√
3
5 R− 1

2

√
3
5 λ (R−+4xR)

f−1 −
√

3
10 R− −1

2

√
3
10 R− 1

2

√
3
10 λ (R−+4xR)

f+1 −
√

3
10 R+ 1

2

√
3
10 R+ −1

2

√
3
10 λ (R++4xR)

f+3 −
√

3
5 R+ 1

2

√
3
5 R+ −1

2

√
3
5 λ (R++4xR)

f (−)
0+

√
6
5 λC−

√
3
10C− -

√
3

10C−

f (−)
0−

√
6
5 λC−

√
3
10C− -

√
3

10C−

f (+)
0+

√
6
5 λC+

√
3
10C+ -

√
3

10C+

f (+)
0−

√
6
5 λC+

√
3
10C+ -

√
3

10C+

F15(1680) f−3 −
√

18
5 λT− −1

2

√
18
5 (T

−+4xT ) 1
2

√
18
5 λT−

f−1 −
√

9
5 λT−+

√
5
2 λ 2R− −1

2

√
9
5(T

−+4xT )+ 1
2

√
5
2 λ 2(R−+2x(6

5)R)
1
2

√
9
5 λT−− 1

2

√
5
2 λ 2(R−+2x(4

5)R)

f+1 −
√

9
5 λT++

√
5
2 λ 2R+ −1

2

√
9
5(T

++4xT )+ 1
2

√
5
2 λ 2(R++2x(6

5)R)
1
2

√
9
5 λT+− 1

2

√
5
2 λ 2(R++2x(4

5)R)

f+3 −
√

18
5 λT+ −1

2

√
18
5 (T

++4xT ) 1
2

√
18
5 λT+



Table G.2 Production amplitudes for charged and neutral current weak interaction from Reference [7] .

Resonance Helicity Weak CC Weak NC (p) Weak NC (n)

f (−)
0+

√
9
10 λ 2S−+

√
5
2 λ 2C− 1

2

√
9
10 λ 2S−(1−4x)+ 1

2

√
5
2 λ 2C− −1

2

√
9
10 λ 2S−(1−4x)− 1

2

√
5
2 λ 2C−

f (−)
0−

√
9
10 λ 2S−−

√
5
2 λ 2C− 1

2

√
9
10 λ 2S−(1−4x)− 1

2

√
5
2 λ 2C− −1

2

√
9
10 λ 2S−(1−4x)+ 1

2

√
5
2 λ 2C−

f (+)
0+

√
9
10 λ 2S++

√
5
2 λ 2C+ 1

2

√
9
10 λ 2S+(1−4x)+ 1

2

√
5
2 λ 2C+ −1

2

√
9
10 λ 2S+(1−4x)− 1

2

√
5
2 λ 2C+

f (+)
0−

√
9
10 λ 2S+−

√
5
2 λ 2C+ 1

2

√
9
10 λ 2S+(1−4x)− 1

2

√
5
2 λ 2C+ −1

2

√
9
10 λ 2S+(1−4x)+ 1

2

√
5
2 λ 2C+

D13(1700) f−3

√
9
10 λR− 1

2

√
9
10 λR− −1

2

√
9
10 λ (R−+4xR)

f−1

√
1
30 λR− 1

2

√
1
30 λR− −1

2

√
1
30 λ (R−+4xR)

f+1

√
1
30 λR+ 1

2

√
1
30 λR+ −1

2

√
1
30 λ (R++4xR)

f+3

√
9
10 λR+ 1

2

√
9
10 λR+ −1

2

√
9
10 λ (R++4xR)

f (−)
0+ −

√
2
15 λC− −1

2

√
2
15 λC− 1

2

√
2

15 λC−

f (−)
0−

√
2
15 λC− 1

2

√
2
15 λC− −1

2

√
2
15 λC−

f (+)
0+ −

√
2
15 λC+ −1

2

√
2
15 λC+ 1

2

√
2

15 λC+

f (+)
0−

√
2
15 λC+ 1

2

√
2
15 λC+ −1

2

√
2
15 λC+

D33(1700) f−3 −
√

9
2 T−

√
9
2(T

−+2xT )

f−1 −
√

3
2 T−− 1√

3
λR−

√
3
2(T

−+2xT )+
√

1
3 λ (R−+2xR)

f+1 −
√

3
2 T+− 1√

3
λR+

√
3
2(T

++2xT )−
√

1
3 λ (R++2xR

f+3 −
√

9
2 T+

√
9
2(T

++2xT ) n = p

f (−)
0+

√
3λS−−

√
1
3 λC− −

√
3λS−(1−2x)+ 1√

3
λC−

f (−)
0−

√
3λS−+

√
1
3 λC− −

√
3λS−(1−2x)− 1√

3
λC−

f (+)
0+

√
3λS+−

√
1
3 λC+ −

√
3λS+(1−2x)+ 1√

3
λC+



Table G.2 Production amplitudes for charged and neutral current weak interaction from Reference [7] .

Resonance Helicity Weak CC Weak NC (p) Weak NC (n)

f (+)
0−

√
3λS++

√
1
3 λC+ −

√
3λS+(1−2x)− 1√

3
λC+

P11(1710) f−1

√
2
3 λ 2R−

√
1
6(R

−+2x(3
2)R) −

√
1
6(R

−+2x(3
2)R)

f+1

√
2
3 λ 2R+

√
1
6(R

++2x(3
2)R) −

√
1
6(R

++2x(3
2)R)

f (−)
0+
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√
1
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√
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10 λT−

√
9
40 λ (T−+4xT ) −

√
9
40 λT−
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√
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√
3
5 λ 2R− −

√
27
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√
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√
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√
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5
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√
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10 λT+ −
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√
9

40 λT+
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√
3
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√
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√
3
20 λ 2S−(1−4x)−

√
5
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√
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√
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f (−)
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√
3
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√
3
20 λ 2S−(1−4x)−

√
5
12 λ (λC−−5B−) −

√
3
20 λ 2S−(1−4x)+

√
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√
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√
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√
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√
5
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√

3
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√
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3
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√
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√
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√

1
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1
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f+3 −
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√
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Resonance Helicity Weak CC Weak NC (p) Weak NC (n)

f (−)
0+

√
4
35 λ 2C− −

√
4
35 λ 2C−

f (−)
0− −

√
4
35 λ 2C−

√
4

35 λ 2C−
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0+

√
4
35 λ 2C+ −

√
4
35 λ 2C+
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0− −

√
4
35 λ 2C+

√
4

35 λ 2C+

P31(1910) f−1

√
1
15 λ 2R−

√
1

15 λ 2(R−+2xR)

f+1

√
1
15 λ 2R+ −

√
1
15 λ 2(R++2xR) n = p

f (−)
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√
4
15 λ (λC−−5B−)

√
4
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√
4
15 λ (λC−−5B−) -

√
4
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√
4
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√
4
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√
4
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√
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√
1
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√
1
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√

1
5 λ 2R+

√
1
5 λ 2(R++2xR) n = p
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0+

√
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√
4
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√
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√
4
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√
4
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√
4
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Resonance Helicity Weak CC Weak NC (p) Weak NC (n)

f−1

√
6
35 λ 2R− −

√
6
35 λ 2(R−+2xR)

f+1 −
√

6
35 λ 2R+

√
6
35 λ 2(R++2xR)

f+3 −
√

2
7 λ 2R+

√
2
7 λ 2(R++2xR) n = p

f (−)
0+ −2

√
6
35 λ 2C− 2

√
6

35 λ 2C−

f (−)
0− −2

√
6
35 λ 2C− 2

√
6

35 λ 2C−

f (+)
0+ −2

√
6
35 λ 2C+ 2

√
6

35 λ 2C+

f (+)
0− −2

√
6
35 λ 2C+ 2

√
6

35 λ 2C+
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Appendix H

Conservation of vector current for
nonresonant interaction

The conservation of vector current (CVC) in HNV model [10] is preserved if:

kµJV
µ = 0 (H.0)

for the vector current of the five diagrams:

kµ(JV
µ )

NP + kµ(JV
µ )

CNP + kµ(JV
µ )

PF + kµ(JV
µ )

CT + kµ(JV
µ )

PP = 0 (H.0)

where PP diagram has only the axial current (JV
µ )

PP = 0. For simplicity we will drop the
overall gA√

2 fπ
factor. Using Equation 4.47 we have:

kµJNP
µ =CNP 1

s−M2 ū(p2) ̸ q γ5(̸ p1+ ̸ k+M)kµFV
µ u(p1), (H.1)

where

kµ(FV )µ = 2
[

FV
1 (k2) ̸ k−µV

FV
2 (k2)

2M
kµ [γµ ,kν

γν ]

]
= 2

[
FV

1 (k2) ̸ k−µV
FV

2 (k2)

2M
kµkν

σµν

]
. (H.1)
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where the second term is zero. Therefore:

kµJNP
µ = CNP 1

s−M2 ū(p2) ̸ q(̸ p1+ ̸ k−M)(2 ̸ kFV
1 (k2)) γ5 u(p1)

= 2CNPFV
1 (k2)

1
k2 +2p1k

ū(p2) ̸ q(̸ p1+ ̸ k−M) ̸ k γ5 u(p1)

= 2CNPFV
1 (k2)

1
k2 +2p1k

ū(p2) ̸ q(k2+ ̸ p1 ̸ k+ ̸ k ̸ p1) γ5 u(p1)

= 2CNPFV
1 (k2) ū(p2) ̸ qγ5 u(p1) (H.-1)

kµJCNP
µ = CCNP 1

u−M2 ū(p2)(2 ̸ kFV
1 (k2)) (̸ p2− ̸ k+M) ̸ qγ5 u(p1)

= 2CCNPFV
1 (k2)

1
k2 −2kp2

ū(p2) ̸ k(̸ p2− ̸ k+M) ̸ qγ5 u(p1)

= −2CCNPFV
1 (k2)

1
k2 −2kp2

ū(p2) (k2− ̸ p2 ̸ k− ̸ k ̸ p2) ̸ qγ5 u(p1)

= −2CCNPFV
1 (k2) ū(p2) ̸ qγ5 u(p1) (H.-3)

kµJPF
µ = CPFFPF(k2)

1
k2 −2qk

ū(p2) γ5 [2qk− k2]2M u(p1)

= −CPFFPF(k2) ū(p2) 2Mγ5 u(p1) (H.-3)

kµ(JV
µ )

CT =CCT FV
CT (k

2) ū(p2) ̸ kγ5 u(p1),

(H.-3)

Therefore H for ν p → µ pπ+ channel (CNP = 0, CCNP =CPF =CCT = 1) will be:

kµJV
µ = ū(p2) [−2FV (k2) ̸ q−2MFPF +FCT ̸ k]γ5 u(p1)

= ū(p2) [−2FV (k2) ̸ q− (̸ p2− ̸ p1)FPF +FCT ̸ k]γ5 u(p1) (H.-3)

If 2F1(k2) = FPF(k2) = FCT (k2) = F(k2):

kµJV
µ = F(k2)ū(p2) [− ̸ q− ̸ p2+ ̸ p1+ ̸ k]γ5 u(p1) = 0 (H.-2)
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Similarly Therefore H for νn → µnπ+ channel (CNP = 1, CCNP = 0, CPF = CCT = −1)
will be:

kµJV
µ = ū(p2) [2FV (k2) ̸ q+2MFPF −FCT ̸ k]γ5 u(p1)

= ū(p2) [2FV (k2) ̸ q+(̸ p2− ̸ p1)FPF −FCT ̸ k]γ5 u(p1)

(H.-3)

where it is zero if 2F1(k2) = FPF(k2) = FCT (k2) = F(k2).
If we multiply an extra form-factor to one the diagram we have to multiply it to the rest of
diagrams. It is clear from Equations H.-2, H.-2, H.-1.





Appendix I

Fitting MA and C5
A

In subsection 5.2.1, we presented our fitting result on one data set i.e. ANL data [38] for
dσ/dQ2 in Delta-region, and then we show very good agreement with other data only with
one data set fitting. Here we show fitting results for different data sets with and without
background.

1. only ν p → µ pπ+ channel and with three data set Here we add more data sets i.e.

• ANL dσ/dQ2 in Delta-region

• ANL total cross-section with no invariant mass cut. Reanalysed data is from
Reference [54].

• BNL total cross-section with no invariant mass cut. Reanalysed data is from
Reference [54].

Here is the fitting result using the full MK-model:

MA = 0.687±0.052 GeV , CA
5 = 1.043±0.104 GeV (I.0)

and the correlation matrix (Table I.1) shows that parameters are strongly anticorrelated.
The minimum of reduced χ2 is 0.72. The fitting result is very similar to what we got

Table I.1 Correlation Matrix

MA CA
5

MA 1 −0.96
CA

5 −0.96 1

in subsection 5.2.1 with only one data set.
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2. all CC channels and with seven data set Here we add more data sets i.e.

• ANL dσ/dQ2 in Delta-region

• ANL and BNL total cross-section of ν p → µ pπ+ channel with no invariant mass
cut. Reanalysed data is from Reference [54].

• ANL and BNL total cross-section of νn → µnπ+ channel with no invariant mass
cut. Reanalysed data is from Reference [55].

• ANL and BNL total cross-section of νn → µ pπ0 channel with no invariant mass
cut. Reanalysed data is from Reference [55].

Here is the fitting result using the full MK-model:

MA = 0.628±0.042 GeV , CA
5 = 1.03±0.097 GeV (I.0)

and the correlation matrix (Table I.2) shows that parameters are strongly anticorrelated.
The minimum of reduced χ2 is 2.75. If we turn off the nonresonant contribution we

Table I.2 Correlation Matrix

MA CA
5

MA 1 −0.938
CA

5 −0.938 1

will get:

MA = 0.756±0.038 GeV , CA
5 = 1.219±0.073 GeV (I.0)

and the correlation matrix (Table I.3) shows that parameters are strongly anticorrelated.
and the minimum of reduced χ2 is 4.11.

Table I.3 Correlation Matrix

MA CA
5

MA 1 −0.947
CA

5 −0.947 1



Appendix J

NEUT prediction on nucleon targets

Here we show the NEUT comparison for two samples CC1π+ and CC1π− on nucleon target
to compare them with results on subsection 6.4.2. CC1π+ sample on nucleon is actually
the summation of two ν p → µ pπ+ and νn → µnπ+ channels that we showed them on
subsection 6.4.1.

CC1π− sample on nucleon is actually the summation of two ν̄ p → µ+pπ− and ν̄n →
µ+nπ− channels that we showed them on subsection 6.4.1.
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Fig. J.1 differential cross-section on free nucleon for CC1π+ sample, as functions of lepton
kinematics (left plots) and hadron kinematic (right plots) as it is predicted by NEUT for RS
model (blue) and the new model (red).
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Fig. J.2 differential cross-section on free nucleon for CC1π− sample, as a functions of lepton
kinematics (left plots) and hadron kinematic (right plots) as it is predicted by NEUT for RS
model (blue) and the new model (red).
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