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1. Introduction

The standard ΛCDM model has solved many issues in cosmology, like the cosmic mi-
crowave background (CMB) radiation data, observed large scale structure or the accelerated
expansion of the Universe. However, in spite of all this success, it also leaves a number of
issues unaddressed. Perhaps the most significant ones are the problem of initial singularity,
where general relativity breaks down, and the inflation era, which demands additional scalar
field.

In order to avoid the initial singularity there were attempts to modify Einstein’s theory
of gravitation or to create its quantum counterpart, which was expected to smooth out the
classical incomplete structure. Attempts to address this issue include at the classical level
braneworld scenarios ([1, 2]) and the ekpyrotic/cyclic model ([3–5]), where the universe goes
from an era of accelerated collapse to an expanding era without any divergences or singular
behaviour, and loop quantum cosmology [6] on the quantum level. There are also higher
order gravitational theories and theories with scalar fields (see [7] for a review) and quite
recently proposed Hořava-Lifshitz modified theory of gravitation [8].

Two papers [H2] and [H3] belonging to the scientific achievement are devoted to studies
of the occurrence of the cosmological bounce and its stability in Hořava modified theory of
gravity.

The portraits of the matter bounce in HL cosmology are attributed only to a homogenous
and isotropic model. Possible deviations from isotropy may become dominant in the small
volume limit, as it happens in GR [9, 10]. Thus the next step to be taken in the research on
the realistic matter bounce is to analyse the effects of anisotropies in cosmology, in view of
Belinskii, Khalatnikov and Lifshitz (BKL) scenario. The addition of shearing components,
due to anisotropies, may make the bounce unstable leading possibly to BKL-type chaotic

2



behavior at the Big Crunch singularity. On the other hand they may prevent the Universe
from collapsing to the singularity and thus avoiding the Big Crunch which is found in some
solutions of the theory. Papers [H4–H6] focus on the quantum description of the earliest
universe originated in the standard Einstein formulation of the theory of gravity.

Papers [H1] and partially [H2] and [H3] focus more on inflation era. Paper [H1] describes
the construction of tools linking models of inflation with observational quantities whereas
[H2–H3] discusses model of inflation driven by pure gravity in the modified Hořava-Lifshitz
theory.

2. Bounce in modified theories of gravity (papers [H2]–[H3])

Hořava-Lifshitz gravity is a proposal for a UV complete theory of gravity due to
Hořava [8]. This theory is referred to as the Hořava-Lifshitz gravity because in the UV
the theory possesses a fixed point with an anisotropic, Lifshitz scaling between time and
space. Soon after this theory was proposed many specific solutions have been found, in-
cluding cosmological ones ([11]). It was also realised that the analog of the Friedmann
equation in the HL gravity contains a term which scales in the same way as dark radiation
in braneworld scenarios [11] and gives a negative contribution to the energy density. Thus,
at least in principle it is possible to obtain non-singular cosmological evolution within the
Hořava theory. Propagation of linear cosmological perturbations through the bounce was
studied in [12], and it was shown that their evolution remains non-singular throughout,
despite a singularity in perturbations’ equation of motion at the bounce point. The scale
invariance of the perturbation spectrum is preserved during the bounce – without the need
for inflation. Thus, the HL gravity can provide a realisation of the “matter bounce” scenario.

The metric of Hořava-Lifshitz theory, due to anisotropy in UV, written in the (3 + 1)-
dimensional ADM formalism reads as:

ds2 = −N2dt2 + gij(dx
i −N idt)(dxj −N jdt), (1)

where N , Ni and gij are dynamical variables.
The gravitational action consists of the sum of the kinetic part L0 and the potential of

the theory L1 (in the so-called “detailed-balance” form, which name is originated in theory
of stochastic processes, namely Markov chains) [8]:

I =

∫
dt d3x(L0 + L1), (2)

L0 =
√
gN

{
2

κ2
(KijK

ij − λK2) +
κ2µ2(ΛR− 3Λ2)

8(1− 3λ)

}
,

L1 =
√
gN

{
κ2µ2(1− 4λ)

32(1− 3λ)
R2 − κ2

2ω4
ZijZ

ij

}
,

where Kij = 1
N

[
1
2
ġij −∇(iNj)

]
is extrinsic curvature of a space-like hypersurface with a

fixed time, a dot denotes a derivative with respect to the time t and covariant derivatives

are defined with respect to the spatial metric gij, Zij = Cij − µω2

2
Rij. Here κ2, λ, µ, ω and

Λ are constant parameters and the Cotton tensor, Cij, is defined by

Cij = εikl∇k

(
Rj

l −
1

4
Rδjl

)
= εikl∇kR

j
l −

1

4
εikj∂kR. (3)
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Matter may be added by introducing a scalar field ϕ ([11]) with energy density ρ and
pressure p. The action for matter is

Im =

∫
dtd3x

√
gNLm. (4)

The matter Lagrangian Lm depends on the scalar matter field ϕ and the 4-dimensional
metric:

Lm =
3λ− 1

2

(
1

2N2
(ϕ̇2 −N i∂iϕ)− V (ϕ)

)
, (5)

This allows to define the energy density and pressure of the scalar field in the following way:

ρ =
3λ− 1

4
ϕ̇2 + V (ϕ), (6)

p =
3λ− 1

4
ϕ̇2 − V (ϕ) (7)

In numerical calculations presented further on a specific form of the scalar potential will be
assumed (see eqn. (13)).

Comparing the action of Hořava-Lifshitz theory to the Einstein-Hilbert action of general
relativity, one can see that the speed of light c, Newton’s constant G and the cosmological
constant ΛE are

c =
κ2µ

4

√
Λ

1− 3λ
, G =

κ2c

32π
, ΛE = − 3κ4µ2

3λ− 1

Λ2

32
, (8)

respectively. Setting dynamical constant λ = 1, reduces the first three terms in (2) to the
usual ones of Einstein’s relativity and matter Langrangian in (4) to the usual scalar field
action in curved space-time.

The equations for Hořava-Lifshitz cosmology are obtained by imposing in equations of
motion the condition of homogeneity and isotropy of the metric. Precisely, the equations
of motion are obtained by varying the action (2) with respect to N , a, and ϕ, and setting
N = 1 at the end of the calculation, leading to

H2 =
κ2ρ

6(3λ− 1)
+

κ4µ2Λ

8(3λ− 1)2

k

a2
− κ4µ2

16(3λ− 1)2

(
Λ2 +

k2

a4

)
, (9)

Ḣ = −κ
2(ρ+ p)

4(3λ− 1)
− κ4µ2Λ

8(3λ− 1)2

k

a2
+

κ4µ2

32(3λ− 1)2

k2

a4
, (10)

and also equation of motion for the scalar field:

ϕ̈+ 3Hϕ̇+
2

3λ− 1
V ′ = 0, (11)

where H = ȧ/a, a prime denotes the derivative with respect to scalar field ϕ. The significant
new terms in the above equations of motion are the (1/a4)-terms on the right-hand sides of
(9) and (10). They are reminiscent of the dark radiation term in braneworld cosmology [13]
and are present only if the spatial curvature of the metric is non-vanishing.

New terms in the cosmological equations introduce the possibility of a bounce. The form
of (9), with k = ±1 implies that it is possible that H = 0 at some moment of time. This
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is a necessary condition for the realization of the bounce. It was pointed out in [11], that
it may happen in the presence of matter, at the critical time t∗, a = a∗, when the critical
energy density is equal to

ρ = ρ∗ =
3κ2µ2

2

(
−Λ

4

k

a2
∗

+
Λ2

8
+

1

8

k2

a4
∗

)
, (12)

which is determined by the couplings of the theory.
My considerations begin during a contracting phase. At the beginning the scale factor

is quite large and the contribution of dark radiation to the total energy density is quite
small. As the universe contracts, the energy density increases and the scale factor decreases
rapidly. When a critical density is achieved, a big bounce is about to take place.

I chose to model the matter sector in this pre-bounce epoch by assuming it had been
described by a scalar field ϕ with a potential

V (ϕ) =
1

2
m2ϕ2. (13)

For calculational simplicity I put m = 1. I also set α = 2/κ2 (the value of κ2 may be
expressed in terms of cosmological constants (8)), I worked in units such that 8πG = 1 and
c = 1. Then

κ2 = 32πGc, (14)

and the values of µ are left arbitrary. The coupling constant λ is dimensionless, its phe-
nomenologically relevant range is ∞ > λ ≥ 1. Moreover, if we want to stay within the IR
limit we may simplify further calculations and set the value λ = 1.

Therefore the Friedmann equations take the following form near the bounce:

Ḣ = −1

2
ϕ̇2 +

µ2k2

2a4
, (15)

H2 =
1

6
(ϕ̇2 + ϕ2)− µ2k2

4a4
. (16)

Additionally, completing dynamics of the system, there is the equation of motion for the
scalar field and the definition of the Hubble parameter:

ϕ̈ = − 2

3λ− 1
ϕ− 3ϕ̇H, (17)

ȧ = aH. (18)

If k 6= 0 one may also consider a subsystem on variables (ϕ, u,H), obtained via reduction
of the original system with respect to constraint (16). Namely, substituting

µ2k2

4a4
=

1

6
(u2 + ϕ2)−H2 (19)

into the equation for Ḣ and omitting equation on dynamics of a leads the following set of
equations:

u = ϕ̇, (20)

u̇ = −ϕ− 3uH, (21)

Ḣ =
1

3
(ϕ2 − u2

2
)− 2H2. (22)
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FIG. 1. Phase trajectories for flat HL universe

This is a reduced 3-dimensional subset of variables (ϕ, u,H). If one wants to obtain also
dynamics of a, he needs to add to this system equation ȧ = aH and also the constraint
equation (16).

The local geometry of the phase portrait is characterised by the nature and position
of its critical points. These points are locations where the derivatives of all the dynamic
variables, i.e. the r.h.s. of (20)–(22), vanish. Moreover, they are the only points where
phase trajectories may start, end, or intersect. They can also begin or end in infinity, and
then – after a suitable coordinate transformation projecting the complete phase space onto
a compact region (so called Poincaré projection) – there may be well defined infinite critical
points. The set of finite and infinite critical points and their characteristic, given by the
properties of the Jacobian matrix of the linearized equations at those points, provides a
qualitative description of the given dynamical system.

Rewriting equations (20)–(22) in terms of the variables

x ≡ ϕ; y ≡ ϕ̇; z ≡ ȧ

a
, (23)

provide three “evolution” equations

ẋ = y, (24)

ẏ = −x− 3yz, (25)

ż =
1

3
(x2 − y2

2
)− 2z2. (26)

The space of solution of the above dynamical system is a 3D region of the phase space
(x, y, z). This region is bounded by a 2D space of trajectories of a flat universe (k = 0).
This limiting surface is a double cone z2 = 1

6
(x2 + y2), with the upper branch corresponding

to expansion and lower one to contraction. Those two branches connect at a point: (0,0,0),
which is a critical point. Hence there are no trajectories passing from one branch of the
cone to the other.

For k = ±1 all trajectories lie between the branches of this cone. Dynamical equations
(20)–(22) contain only k2, their solutions are the same for either non-zero value of k: k = −1
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. Different types of phase trajectories for a non-flat Hořava-Lifshitz universe.

or k = 1. This cone is also a limiting surface for trajectories with large a. The further a
trajectory lies from this cone, the smaller are the values of a along it.

Figures 2a–2f exhibit phase portraits described in the paper [H2]. I found that they
have a different structure than in standard cosmology, e.g. comparing to results from the
paper [14], we can see that there are additional repellers in the contracting part of a phase
space, and mirror attractors in the expanding part. Their presence allows the existence of
a bounce, because now there are possible new families of trajectories, starting at additional
repellers in the contracting part, and possibly ending at new attractors in the expanding
part, or surrounding the (0, 0, 0) point, which is now a centre, compared to saddle in standard
cosmology. Those are realisations of the bounce. The most interesting one contains a period
of rapid contraction, and – after a bounce – a period of rapid expansion, which may fit in
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inflationary scenario.
Nevertheless there are still initial conditions which lead to the Big Crunch, as shown in

the Figures 2a and 2d, or which start at initial singularity (Fig. 2b and 2d). Hence the
existence of a bounce is not generic for Hořava theory and depends on initial conditions.

Another interesting class of solutions consists of quasi stationary universes. These so-
lutions are described in phase space by closed orbits, winding around the critical point
(0, 0, 0) – a centre. All trajectories in the neighbourhood of this point end up as closed or-
bits, “deformed circles”. Equations of motion do not allow closed orbits laying on z = const.
plane, resulting in slight deformation of the circular orbits. The values of H oscillate around
stationary stage, for sufficiently small values of ϕ and ϕ̇. Values of the scale parameter a
during this evolution are much bigger than the regime for which our simplifications are valid.
Therefore this behaviour is not a feature of the Hořava-Lifshitz theory, but of cosmologies
with modified equations of motion, i.e. with the additional term ∼ 1/a4 in the Friedmann
equations.

The visualisations presented in the paper [H2] describe the dynamics of Hořava-Lifshitz
universe in the regime of small scale factor a, when standard curvature and Λ terms are
not relevant. Even in such slightly limited framework they answer the question of possible
scenarios realising a bounce, and whether it is generic for the theory or not. It appears
not, as I found solutions leading to infinite collapse, or starting at the initial singularity,
both staying within the regime of small a. There is also an interesting possibility of quasi
stationary, oscillating universe, existence of which is clearly implied by dark radiation term
in the Friedmann equations.

Bounce scenarios in the Sotiriou-Visser-Weinfurtner generalisation of the projectable Hořava-

Lifshitz gravity (paper [H3])

The gravitational action written in the ”detailed balance” form (2) contains terms up to
quadratic in the curvature. However the most general renormalizable theory contains also
cubic terms, as it was pointed out in [11]. Thus Sotiriou, Visser and Weinfurtner ([15]) built
a theory with projectability condition N = N(t), as in original Hořava theory, but without
the detailed balance condition. This led to Friedmann equations with an additional term
∼ 1/a6 and uncoupled coefficients:

H2 =
2

(3λ− 1)

(
ρ

3
+ σ1 + σ2

k

a2
+ σ3

k2

a4
+ σ4

k

a6

)
, (27)

Ḣ =
2

(3λ− 1)

(
−p

2
− ρ

2
− σ2

k

a2
− 2σ3

k2

a4
− 3σ4

k

a6

)
. (28)

Values of constants σ3, σ4 are arbitrary. In order to coincide with the Friedmann equations
in the IR limit λ = 1 and for large a (terms proportional to 1/a4 and to 1/a6 are then
negligible) one has to set σ1 = Λ/3 and σ2 = −1. Thus the above equations take the
following forms:

H2 =
2

(3λ− 1)

(
ρ

3
+

Λ

3
− k

a2
+ σ3

k2

a4
+ σ4

k

a6

)
, (29)

Ḣ =
2

(3λ− 1)

(
−ρ(1 + w)

2
+
k

a2
− 2σ3

k2

a4
− 3σ4

k

a6

)
, (30)

8



where the equation of state p = wρ was used. New terms, proportional to 1/a6, appearing
in the analogs of Friedmann equations, mimic stiff matter (e.g. such that ρ = p and ρstiff ∼
1/a6). These terms are negligibly small at large scales, but may play a significant role at
small values of a scale parameter.

In the work [H3] I performed a detailed analysis of a phase structure of the HL cosmology
with and without detailed balance condition. Both this models contain a dark radiation term
1/a4 in the analogs of the Friedmann equations. Thus it is possible for a non flat universe
(k 6= 0) that the Hubble parameter H = 0 at some moment of time, which is a necessary
condition for the realisation of the bounce. Comparing phase trajectories obtained in those
models we have attempted to answer the question how the generalisation of Hořava gravity
(breaking the detailed balance condition) impacts the occurrence and behaviour of bouncing
solutions. Additional term 1/a6 that appears in the Friedmann equations of SVW model, is
of either sign, and thus it may possibly compensate the 1/a4 term (generic for HL gravity)
leading to the singular solution.

Indeed, it occurred that the biggest difference between the Hořava theory and its gen-
eralisation arrives for the small values of a scale parameter a and a Hubble parameter H.
This is not surprising, as the SVW gravity term 1/a6 plays role only for the small values of
a and becomes insignificant for the bigger ones.

In the original Hořava formulation there may be two finite critical points, one of them
a center and one a saddle. Around a center there are closed orbits corresponding to the
oscillating universe, i.e. going through eternal cycles of contraction, bounce and expansion.
These orbits resemble bounce solutions or quasi-stationary ones presented in [H2]. They are
physically interesting either for a closed universe with a positive cosmological constant, or
an open universe with k = 1 and a negative cosmological constant Λ. The second class of
oscillating solutions, with vanishing density ρ = 0, appears when k/Λ > 0. Additionally,
there is a third bounce scenario around a linear center, and for some values of parameters
there are no bouncing solutions.

In the SVW HL cosmology, with additional term appearing in the analogs of Friedmann
equations, there may exist 0, 1, 2 or 3 finite critical points. Critical points might be stable
centers – surrounded by closed orbits, describing oscillating universes, or unstable saddles.
There also exist solutions with orbits around a linear center at infinity, where similarly as
in the original HL theory, a universe starts from a static infinite then collapses to a finite
size, undergoes a bounce and then expands to a static infinite state. Thus there is one cycle
only, without further oscillations. There are also sets of parameters, much wider than in the
original HL theory, that do not allow the existence of finite critical points, leading only to
singular solutions.

The most significant feature of oscillating (and bouncing) solutions in the SVW formula-
tion is the existence of two centers, with a saddle between them (three finite critical points)
for some values of parameters. In a more realistic situation, that includes dynamical change
of state parameter, it would be possible to go from one oscillating bouncing solution to
another. In both models, the original HL gravity and the SVW generalisation, there are
classes of parameters that do not allow a non singular evolution. Physical interpretation of
some of these parameters (coupling constants σ3 and σ4 in SVW model) still remains an
open question.
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3. Smoothing the initial singularity in anisotropic cosmological models (papers [H4]–[H6])

The Friedmann-Robertson-Walker model is successfully used to describe the data of ob-
servational cosmology. Nevertheless, the isotropy of space is dynamically unstable towards
the big-bang singularity [9]. On the other hand, if the present Universe originated from
an inflationary phase, then the pre-inflationary universe is supposed to have been both in-
homogeneous and anisotropic. The dynamics of such universe backwards in time becomes
ultralocal and effectively identical with the homogeneous but anisotropic one at each spatial
point. In both cases quantisation of the isotropic models alone appears to be insufficient.
Hence the quantum version of an anisotropic model, comprising the Friedmann model as a
particular case, is expected to be better suited for describing the earliest Universe.

Among the possible homogeneous models, the Bianchi IX model has sufficient generality
to describe the evolution of a small patch of space towards the singularity. The dynamics of
the vacuum Bianchi IX model (i.e., the Mixmaster universe [16]) is nonintegrable. However,
close enough to the singularity, each solution can be qualitatively understood as a sequence
of Kasner epochs, which correspond to the Kasner universe. The transitions between the
epochs are described by the vacuum Bianchi II type evolution. The universe undergoes an
infinite number of chaotic-like transitions and eventually collapses into the singularity in a
finite proper time [9].

The quantisation of the Bianchi IX model requires full understanding of its classical
dynamics in terms of variables convenient for quantisation procedure. Such analysis is per-
formed in paper [H4]. Paper [H5] is devoted to quantisation of the Bianchi IX/Mixmaster
model in the adiabatic approximation. The last paper of this subtopic, [H6], contains stud-
ies of the spectral properties of the anisotropic part of Hamiltonian entering the quantum
dynamics of the Mixmaster universe. Those results validate and improve the known ap-
proximations to the anisotropy potential and they should be useful for any approach to the
quantisation of the Mixmaster universe.

The phase space of the Bianchi IX (paper [H4])

The general form of a line element of the nondiagonal Bianchi IX model, in the syn-
chronous reference system, reads

ds2 = dt2 − γab(t)eaαebβdxαdxβ, (31)

where Latin indices a, b, . . . run from 1 to 3 and label the frame vectors eaα, and Greek indices
α, β, . . . take values 1, 2, 3 and concern space coordinates.

This metrics is generally non-diagonal globally, although it can be diagonalized at each
separate moment of time. According to [9] the exact 3-dimensional metric γ̂ is given by

γ̂ = R̂−1Γ̂R̂, (32)

where Γ̂ = diag(Γ1,Γ2,Γ3) and R̂ is an orthogonal matrix (R̂T = R̂−1, det R̂ = 1). The

matrix R̂ transforms the 3-dimensional metric tensor gαβ to the principal axes and this
rotation might be described in terms of Euler angles (θ, ϕ, ψ): rotation, precession and pure

rotation. In other words R̂ = R̂θR̂ϕR̂ψ, where R̂θ, R̂ϕ and R̂ψ are standard rotation matrices.
In the general case, the Euler angles (θ, ϕ, ψ) are time dependent and describe the rotation

with respect to the frame vectors ea, which are fixed. In the asymptotic regime the Euler
angles become time independent, but Γα stay being functions of time.
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One can diagonalize the metric γ̂ in the asymptotic regime by using R̂γ̂R̂−1 = Γ̂. Since
R̂ is time independent there, this diagonal form will exist until the gravitational system
approaches the singularity. In this regime, the line element (31) can be presented as follows:

ds2 = dt2 −
(
a2e(1)

α e
(1)
β + b2e(2)

α e
(2)
β + c2e(3)

α e
(3)
β

)
dxαdxβ, (33)

where
a := Γ1, b := Γ2C

2 cos2 θ0, c := Γ3C
4 sin2 θ0 cos2 θ0 sin2 ψ0, (34)

and C is a constant of motion.
After making use of the Bianchi identities, freedom in the rotation of the metric γab

and frame vectors eaα, one arrives at the well-defined but complicated system of equations
specifying the dynamics of the nondiagonal Bianchi IX model. The asymptotic form (very
close to the cosmological singularity) of the dynamical equations of the nondiagonal Bianchi
IX model is following ([9]):

∂2 ln a

∂τ 2
=
b

a
− a2,

∂2 ln b

∂τ 2
= a2 − b

a
+
c

b
,

∂2 ln c

∂τ 2
= a2 − c

b
, (35)

where a, b, c are functions of time τ only. The solutions to (35) must satisfy the condition

∂ ln a

∂τ

∂ ln b

∂τ
+
∂ ln a

∂τ

∂ ln c

∂τ
+
∂ ln b

∂τ

∂ ln c

∂τ
= a2 +

b

a
+
c

b
. (36)

Here cosmological time variable t is redefined as follows: dt =
√
| det γab| dτ . It is easy to

verify that (35) can be obtained from the Lagrangian equations of motion:

d

dτ

( ∂L
∂ẋI

)
=

∂L

∂xI
, I = 1, 2, 3, (37)

where x1 := ln a, x2 := ln b, x3 := ln c, and ẋI := dxI/dτ , and the Lagrangian L has the
form

L := ẋ1ẋ2 + ẋ1ẋ3 + ẋ2ẋ3 + exp(2x1) + exp(x2 − x1) + exp(x3 − x2). (38)

The Hamiltonian of the system has the form

H := pI ẋI−L =
1

2
(p1p2+p1p3+p2p3)−1

4
(p2

1+p2
2+p2

3)−exp(2x1)−exp(x2−x1)−exp(x3−x2),

(39)
which leads to the dynamical constraint

H = 0. (40)

The Hamilton equations have the following explicit form:

ẋ1 =
1

2
(−p1 + p2 + p3), (41)

ẋ2 =
1

2
(p1 − p2 + p3), (42)

ẋ3 =
1

2
(p1 + p2 − p3), (43)

ṗ1 = 2 exp(2x1)− exp(x2 − x1), (44)

ṗ2 = exp(x2 − x1)− exp(x3 − x2), (45)

ṗ3 = exp(x3 − x2). (46)
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Taking derivatives of (41)–(43) and making use of (44)–(46) leads directly to Eq. (35).
Since the constraint (40) is a direct consequence of the constraint (36), the Lagrangian and
Hamiltonian formulations are completely equivalent.

The system (41)–(46) presents a set of nonlinear coupled differential equations. The space
of the solution of the above dynamical system is defined in R6. This space is bounded by
the constraint equation (40). Solving (40) with respect to x3 gives

x3 = x2 + log

[
−e2x1 − e−x1+x2 − p2

1

4
+
p1p2

2
− p2

2

4
+
p1p3

2
+
p2p3

2
− p2

3

4

]
. (47)

Substituting (47) into (41)–(46) we get

ẋ1 =
1

2
(−p1 + p2 + p3), (48)

ẋ2 =
1

2
(p1 − p2 + p3), (49)

ṗ1 = 2e2x1 − e−x1+x2 , (50)

ṗ2 = e2x1 + 2e−x1+x2 +
p2

1

4
− p1p2

2
+
p2

2

4
− p1p3

2
− p2p3

2
+
p2

3

4
, (51)

ṗ3 = −e2x1 − e−x1+x2 − p2
1

4
+
p1p2

2
− p2

2

4
+
p1p3

2
+
p2p3

2
− p2

3

4
. (52)

Thus the set of critical points SB of the above system is given by

SB : = {(x1, x2, x3, p1, p2, p3) ∈ R̄6 | (x1 → −∞, x2 − x1 → −∞, x3 − x2 → −∞)

∧(p1 = 0 = p2 = p3}, (53)

where R̄ := R ∪ {−∞,+∞}. It is not easy to give a more specific definition of SB, situated
at infinity, with the current choice of the phase space variables. The stability properties
are determined by the eigenvalues of the Jacobian of the system (41)–(46). More precisely,
one has to linearize Eqs. (41)–(46) at each point. Inserting ~x = ~x0 + δ~x, where ~x =
(x1, x2, x3, p1, p2, p3), and keeping terms up to first order in δ~x leads to an evolution equation

of the form δ~̇x = Jδ~x. Eigenvalues of J describe stability properties at the given point.
In the paper [H4] I analysed the mathematical structure of higher-dimensional physical

phase spaces of the nondiagonal Bianchi IX model in the neighbourhood of the cosmological
singularity by using dynamical system methods. Critical points of the Hamiltonian equations
are of a nonhyperbolic type, which is a generic feature of the considered singular dynamics.
The reduction of the kinematical symplectic 2-form to the constraint surface enables the
determination of the physical Hamiltonian.

Since all eigenvalues of the Jacobian (corresponding to the nonlinear vector field) are
purely imaginary, no reduction to lower-dimensional phase space is possible by using, e.g.,
the center manifold theory. Since all the critical points are nonhyperbolic, the information
obtained from linearization is inconclusive. The nonhyperbolicity seems to be a generic
feature of the considered singular dynamics.

To cope with some of the problems described we proposed to reduce the kinematical
symplectic 2-form to the constraint surface, which enabled the determination of the physical
Hamiltonian. This procedure lowered the dimensionality of the dynamics arena.

12



Quantisation of the Bianchi IX/Mixmaster model (paper [H5])

The BKL predicts that on approach to a spacelike singularity the dynamics of gravita-
tional field may be significantly simplified as time derivatives in Einstein’s equations domi-
nate over spatial derivatives. The latter means that the evolution of the gravitational field in
this regime is ultralocal and space splits into collection of small patches whose dynamics is
approximately given by spatially homogenous spaces, the Bianchi models. Approaching the
singularity the spatial curvature grows and the space further subdivides into homogenous
slices. The size of each patch, modelled in most general case by the Bianchi IX spacetime,
corresponds to the magnitude of the spatial derivatives in the Einstein equations. As homo-
geneity of spatial fragments holds only at some level of approximation, dynamical evolution
of the newly formed patches starts off with slightly different initial conditions.

The imposition of quantum rules into the chaotic dynamics of the Bianchi IX model has
been already studied [16–18] however the search for solutions in most of those formulations
is quite challenging [19, 20] leaving the near big bang dynamics largely unexplored.

In the paper [H5] we made a quantum study of Bianchi IX model by combining canonical
and affine coherent state (ACS) quantizations with a semiclassical approach. Inspired by
standard approaches in molecular physics, we made an assumption about the quantum
evolution of the anisotropic variables based on the adiabatic approximation.

Classical Hamiltonian of the vacuum Bianchi IX model reads

H =

(
2πG

3c2a3

(
a2p2

a − p2
+ − p2

−
)
− c4

32πG
aVn(β±)

)
. (54)

where G is Newton’s constant, c is the speed of light, (a, pa) and (β±, p±) are canonical phase
space variables relative to the scale factor a and the anisotropy degrees of freedom β±. The
potential Vn has the form

Vn(β±) = e−4β+

((
e6β+ − 2 cosh(2

√
3β−)

)2

− 4

)
. (55)

The system under consideration has the Hamiltonian constraint H = 0.
The Bianchi IX potential has three “open” C3v symmetry directions (see, Fig. 3). One

can view them as three deep “canyons”, increasingly narrow until their respective wall edges
close up at the infinity whereas their respective bottoms tend to zero potential.

For the purpose of quantisation, we redefined partially the phase space variables by
introducing the canonical pair (q, p) := (a3/2, 2pa/(3

√
a). This leads to the new form of the

Hamiltonian (54):

H =

(
3πG

2c2
p2 − H±(q)

)
, (56)

H±(q) :=
2πG

3c2q2
(p2

+ + p2
−) +

c4

32πG
q2/3Vn(β±) . (57)

The analytical expression for H looks like a molecular Hamiltonian, the pair (q, p) playing
the role of the “nucleus” variables and (β±, p±) the one of “electronic” variables. Only
the coupling between nucleus-like and electronic-like degrees of freedom differs from the
usual molecular case. Quantum molecular systems are usually treated by making use of
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FIG. 3. Global picture of the potential Vn near its minimum. Boundedness from below, and three

canyons are illustrated.

the Born-Oppenheimer Approximation hence the idea of the same approach in cosmological
case.

The pairs (β±, p±) were quantised canonically and the pair the pair (q, p) by coherent

states method. The quantized Hamiltonian Ĥ corresponding to (56) reads

Ĥ =

(
3πG

2c2

(
p̂2 +

~2K1

q̂2

)
− Ĥ±(q̂)

)
, (58)

with

Ĥ±(q) =
2πG

3c2
K2

p̂2
+ + p̂2

−

q2
+

c4

32πG
K3 q

2/3Vn(β±) , (59)

where the K1,K2 and K3, are positive numerical constants. The repulsive potential term
~2K1q̂

−2 is generated by the ACS.
Applying Born-Oppenheimer approximation leads to assumption that the anisotropy

degrees of freedom β± are frozen in some eigenstate of Ĥ±(q) with eigenenergy E
(N)
± (q),

N = 0, 1, . . . evolving adiabatically. The semiclassical Hamiltonian ȞN(q, p) is defined as

ȞN(q, p) = 〈λq, p|ĤN |λq, p〉 , where |q, p〉 is the affine coherent state peaked on a classical
phase space point (q, p). The Hamiltonian constraint imposed at the semiclassical level,
ȞN = 0, reads: ( ȧ

a

)2

+ k
( c
a

)2

+ s2
P c

2K4

a6
=

8πG

3
ρ(a) , (60)

where

sP := 2πG~ c−3, k :=
K5

4
, ρ(a) := ~(N + 1)

K6

a4
, (61)

and K4 > 0,K5 > 0, and K6 > 0 are numerical constants. The two terms in (60) including the
reduced Planck constant ~ are of the quantum origin. Equation (60) reminds the classical
Friedmann’s equation ( ȧ

a

)2

+ k
( c
a

)2

=
8πG

3
ρ(a) , (62)

14



where k belongs to the set {−1, 0,+1} depending on spatial curvature, the energy density
ρ ∝ a−3 for matter, and ρ ∝ a−4 for radiation. For this reason ρ(a) that occurs in (60) is
interpreted to be a radiation term.

The solution of (60) for a is a periodic function a ∈ [a−, a+] with a− > 0 and a+ < ∞,
which resolves the cosmic singularity problem of the Bianchi IX universe.

Spectrum of the quantum Mixmaster (paper [H6])

The knowledge of properties of the anisotropic Hamiltonian is a solid starting point for
studying the full model, which includes the coupling between the anisotropic and isotropic
variables. The details of such a framework depend on the specific quantisation of the isotropic
Hamiltonian. The dynamics following from the Wheeler-DeWitt equation is known to be
singular, whereas the quantisation proposed in [H5] and [P5]–[P7] produces an extra repulsive
term that replaces the classical singularity with a bounce.

For any quantum system the knowledge of the full spectrum of the Hamiltonian is crucial.
For example, the adiabatic approximation can be considered only for the discrete part of
the spectrum of a relevant subsystem, and only if this discrete part is not embedded into
a continuous one. These features were considered by B. Simon in [21]. Therefore the proof
that the Bianchi IX anisotropy spectrum is indeed purely discrete for any volume of the
universe is essential. Furthermore the knowledge of the analytical approximations to the
spectrum is decisive.

Results described in [H6] concern the analytical properties of the anisotropic Schrödinger
spectrum which is proper to the Bianchi IX geometry, so they should be useful for studies
of many quantum models of Mixmaster.

There exists in the mathematical literature a general criterion for non-compact potentials
to originate purely discrete spectra. It was proved by Wang and Wu in 2008 [22]. A clear
account of this result was later given by Simon in [23]. These authors assert that the
Schrödinger operator in any dimension:

Ĥ = −∆ + V (63)

has a purely discrete spectrum if the Lebesgue measure | · | of the projection set ΩM(V ) =
{x | 0 ≤ V (x) < M} is finite:

|ΩM(V )| <∞. (64)

In the paper [H6] I applied this criterion to prove that the spectrum of the Schrödinger
equation corresponding to the Hamiltonian (54) is purely discrete.

For this purpose I had to show that the surface area containing points β = (β+, β−)
satisfying

ΩM = {β : 0 ≤ V (β) < M} (65)

is finite |ΩM | <∞. In practice it was only necessary to show that the area enclosed by the
constant potential lines V (β) = M is finite. Several equipotential lines of (55) are plotted
in Fig. (4). They are closed for M < 1 and open for M > 1. Thus, in order to prove the
finiteness of |ΩM | it was sufficient to consider the M > 1 case.

The enclosing curves satisfying V (β) = M > 1 might be parametrised by the four
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FIG. 4. Plot of the contours of the anisotropy potential V (β) = 0.8, 10, 102, 103. The shaded

region corresponds to the compact domain of V (β) < 1. The domain of V (β) < M is non-compact

for M > 1 .

following equations:

β− = ±
√

3

6
arcosh

1

2

(
e−6β+ +

√
4 + 3(M − 1)e−4β+

)
, β+ ∈ R

β− = ±
√

3

6
arcosh

1

2

(
e−6β+ −

√
4 + 3(M − 1)e−4β+

)
, β+ 6 X ,

(66)

where X is the negative root of e−6β+−
√

4 + 3(M − 1)e−4β+ = 2. Due to the C3v symmetry
of the potential, in order to prove that the enclosed surface area is finite, it is sufficient to
prove that the area of a part of the surface delimited by the curves (66), say,

|ΩM(β0)| =
√

3

6

∫ ∞
β0

arcosh
1

2

(
e−6β+ +

√
4 + 3(M − 1)e−4β+

)
dβ+ (67)

is finite for some β0 <∞. In the paper [H6] by a series of approximations I proved that

|ΩM(β0)| <
√

3

12

(√
3(M − 1)

2
e−2β0 +

3(M − 1)

8
e−4β0 +

1

3

[
3(M − 1)

8

] 3
2

e−6β0

)
<∞ .

(68)

This result validates implementation of approximations of the potential, which remove
the three non-compact canyons and lead to more manageable Schrödinger operators.

4. Modified inflation (papers [H1] and [H3])

Models of k-inflation [24] modify standard single-field inflation by allowing a more general
form of the kinetic energy terms. An important feature of k-inflation is the alteration of the
speed of propagation of disturbances in the inflaton field – the speed of sound cs.
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One particularly interesting example of this is a model which replaces the canonical
kinetic energy by the Dirac-Born-Infeld form [25]. The DBI form of the kinetic energy terms
involves a square root factor, γ > 1, reminiscent of the Lorentz factor of special relativity.
Indeed, the square root is responsible for introducing a “speed limit” on the inflaton scalar.
A particularly simple situation arises when the γ factor is constant [26], which means that
the speed of sound is also constant, as in the canonical case, but no longer equal to the
speed of light. This case can be considered as a leading approximation in an expansion of
the field dependent speed of sound if it is assumed to vary slowly in the relevant region of
field space.

Paper [H1] contains the analysis of a series of frequently considered models of slow roll
inflation and explores how sensitive their predictions are when one allows a small deviation
from the canonical form of the kinetic energy, as measured by a constant γ > 1. Those
results are evaluated at the time when the present Hubble scale crossed the horizon during
inflation. There is also included a discussion of a number of popular inflationary models case
by case. In most cases, notably chaotic inflation, the results for the inflationary observables
do not depend on γ, or the dependence is very weak. However in some cases of modular
inflation it is found that the tensor fraction r effectively grows with γ, so one can envisage
that it might become observable due to this effect.

D. Applications of the results

Papers [H2]–[H3] provide a classical mechanism to replace the initial singularity with the
so called Big Bounce. There exists stable and unstable scenarios of such a mechanism. The
main drawback of this possibility is the need to modify the standard theory of gravity.

Paper [H4]–[H6] explore the anisotropic aspects of the initial singularity, described in
terms of the Bianchi IX model, and possibilities of smoothing it out by quantization proce-
dure. The results provide the resolution of the classical singularity by means of a repulsive
potential generated by ACS quantization procedure. A similar term in the analogs of the
Friedmann equation also appears in the modified theories of gravity described in [H2] - [H3].
Additionally, the anisotropic degrees of freedom remain in their lowest energy states dur-
ing the quantum phase. It implies that the quantum Friedmann model, unlike its classical
counterpart, is in fact stable with respect to the anisotropy, which is very novel and striking
feature. Additionally, the paper [H6] validates and improves the known approximations to
the anisotropy potential of the Bianchi IX model. take te zastosowane w [H5].

The results of [H1] show that in most cases the dependence of inflationary observables on
the speed of sound is actually rather weak for the range of cs allowed by existing bounds on
non-gaussianity. It is expected that soon the those bounds will be significantly tightened or
a measurement of it will be made, thus it is important to consider theoretical options which
lead to non-gaussian perturbation spectra.

Additionally, papers [H2]–[H3] describe periods of accelerated expansion of the universe,
which is driven by pure modified gravitation. It is quite tempting to think about replacing
standard inflaton field era by the purely gravitational inflation.
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V. DESCRIPTION OF OTHER SCIENTIFIC ACHIEVEMENTS

A. Other publications (after completing PhD studies)

P1: E. Czuchry, J. Jezierski and J. Kijowski, Boundary data in canonical gravity and ther-
modynamics of black holes, Nuovo Cimento B 119, 733 (2004).

P2: E. Czuchry, J. Jezierski and J. Kijowski, Dynamics of gravitational field within a wave
front and thermodynamics of black holes, Phys. Rev. D 70, 124010 (2004).

P3: J. Kijowski and E. Czuchry, Dynamics of a self-gravitating shell of matter, Phys. Rev.
D 72, 084015 (2005).

P4: J. Kijowski and E. Czuchry, Dynamics of a self gravitating light-like matter shell with
spherical symmetry, Class. Quantum Grav. 27, 235007 (2010).

P5: H. Bergeron, E. Czuchry, J.-P. Gazeau, P. Makiewicz, and W. Piechocki, Singularity
avoidance in a quantum model for Mixmaster universe, Phys. Rev. D 92, 124018
(2015).

P6: H. Bergeron, E. Czuchry, J.-P. Gazeau, and P. Makiewicz, Nonadiabatic bounce and
an inflationary phase in the quantum mixmaster universe, Phys. Rev. D 93, 124053
(2016).

P7: H. Bergeron, E. Czuchry, J.-P. Gazeau, and P. Makiewicz, Vibronic framework for
quantum mixmaster universe, Phys. Rev. D 93, 064080 (2016).

P8: E. Czuchry, D. Garfinkle, J. R. Klauder, W. Piechocki, Do spikes persist in a quantum
treatment of spacetime singularities?, Phys. Rev. D 95, 024014 (2017).

Four papers published before PhD defence are not included, nor five conference proceedings.

B. Description of the publications above

Papers [P1]–[P4] contain material and its continuation from my PhD thesis. They de-
scribe the Lagrangian and Hamiltonian dynamics of gravitational field with boundary data
specified on a null, light-like hypersurface, or a wave front.

In paper [P1] dynamics of a self-gravitating shell of matter is derived from the Hilbert
variational principle and then described as an Hamiltonian system. Paper [P2] provides
Hamiltonian dynamics of gravitational field contained in a spacetime region with null bound-
ary S: complete Hamiltonian formula for the dynamics is derived. A quasi-local proof of
the first law of black holes thermodynamics is obtained as a consequence, in case when S is
a non-expanding horizon. The zeroth law and Penrose inequalities are discussed from this
point of view.

Paper [P3] describes dynamics of a self-gravitating massive shell of matter. It is de-
rived from the Hilbert variational principle and then formulated as an (infinite dimensional,
constrained) Hamiltonian system. This method enables defining singular Riemann tensor
of a non-continuous connection standard formulae of differential geometry, with derivatives
understood in the sense of distributions. Bianchi identities for the singular curvature are
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proved. They match the conservation laws for the singular energy-momentum tensor of
matter. Assumption about continuity of the four-dimensional spacetime metric is widely
discussed.

Results from the papers [P1]–[P3] led to a novel Hamiltonian description of the dynam-
ics of a spherically symmetric, light-like, self-gravitating shell [P4]. I had obtained it via
the systematic reduction of the phase space with respect to the Gauss-Codazzi constraints.
Moreover, I explicitly calculated the Hamiltonian of the system (numerically equal to the
value of the ADM mass). A geometric interpretation of the momentum canonically conju-
gate to the shell’s radius is given. Models of matter compatible with the shell dynamics
are found. A transformation between the different time parameterizations of the shell is
calculated. The presented model was supposed to become a new toy model of quantum
gravity. Indeed, I started applying ACS quantization method (phase space is a half-plane)
to derived Hamiltonian. I already have results for a graviational shock wave, and I am
working on including light-like matter.

Papers [P5]–[P7] are devoted to the quantum model of the Bianchi IX universe, calcu-
lated using approximations well established in molecular physic: Adiabatic Born-Huang-
Oppenheimer approximation and nonadiabatic vibronic framework. Namely, paper [P5]
describes a quantum model of the vacuum Bianchi IX dynamics obtained by a compound
quantisation procedure: an affine coherent state quantisation for isotropic variables and a
Weyl quantisation for anisotropic ones. To obtain energy spectrum an adiabatic approxima-
tion (Born-Oppenheimer-like approximation) is applied for anisotropic potential expanded
around its minimum (so in harmonic approximation). Classical initial singularity is resolved
to a repulsive potential generated by the affine quantisation, a signature of the ACS quan-
tisation. This procedure shows that during contraction the quantum energy of anisotropic
degrees of freedom grows much slower than the classical one. Furthermore, far from the
quantum bounce, the classical recollapse is reproduced.

Paper [P6] is continuation of the manuscript [P5] and contains the study the quantum
anisotropic oscillations during the bouncing phase of the universe. Neglecting the backre-
action from transitions between quantum anisotropy states leads to analytical results. In
particular, there was identified a parameter which is associated with dynamical properties of
the quantum model and describes a sort of phase transition. Once the parameter exceeds its
critical value, the Born-Huang-Oppenheimer approximation breaks down. The application
of the present result to a simple model of the Universe indicates that the parameter indeed
exceeds its critical value and that there takes place a huge production of anisotropy at the
bounce. This in turn must lead to a sustained phase of accelerated expansion, an infla-
tionary phase. Paper [P7] contains a follow-up material in vibronic approximation which
accommodates the full evolution of the oscillatory degrees of freedom and their backreaction
on the background dynamics. The background dynamics is given a semiclassical treatment
by confining it to the space of coherent states. In the limit of large volumes, the semiclassical
dynamics coincides with the classical one. The result is a consistent set of equations, which
include quantum and semiclassical degrees of freedom and which preserve the semiclassi-
cal constraint. Numerical studies confirm the possibility of stable Friedmann-like adiabatic
quantum dynamics as well as of the breakdown of adiabatic behaviour.

Paper [P8] discusses the existence of additional features on approach to chaotic singularity
of the BKL scenario. Those features are called spikes and are classically created by the
following mechanism: particular spatial points follow an exceptional dynamical path that
differs from that of their neighbours, with the consequence that, in the neighbourhood of
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these exceptional points, the spatial profile becomes ever more sharp. The work [P8] tried
to answer the question whether spikes persist when the spacetime dynamics is treated using
quantum mechanics. In order to address this question, Hamiltonian system that describes
the dynamics of the approach to the singularity is considered from the point of view of
quantisation. The formalism needed for this treatment is set up, being based on affine
quantization approach. The preliminary investigation points to the nonexistence of quantum
spikes.
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