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Abstract
Machine learning based catalogs of quasars and galaxies for cosmological studies

Szymon Nakoneczny

We present two catalogs of quasars derived from the photometric Kilo-Degree Survey (KiDS)
Data Release 3 and 4 (DR3, DR4). We present an approach to classification in KiDS DR3,
and a more complex methodology to KiDS DR4, in which we add near-infrared imaging,
estimate photometric redshifts, and extrapolate to magnitudes fainter than available in the
spectroscopy. Our approach to KiDS DR4 produces the final quasar catalog, which we de-
scribe below. We build the catalog by training machine learning (ML) models, using optical
ugri and near-infrared ZY JHKs bands, on objects known from Sloan Digital Sky Survey
(SDSS) spectroscopy. We define inference subsets from the 45 million objects of the KiDS
photometric data limited to 9-band detections, based on a feature space built from magnitudes
and their combinations. We show that projections of the high-dimensional feature space on
two dimensions can be successfully used, instead of the standard color-color plots, to in-
vestigate the photometric estimations, compare them with spectroscopic data, and efficiently
support the process of building a catalog. The model selection and fine-tuning employs
two subsets of objects: those randomly selected and the faintest ones, which allowed us to
properly fit the bias versus variance trade-off. We tested three ML models: random forest
(RF), XGBoost (XGB), and artificial neural network (ANN). We find that XGB is the most
robust and straightforward model for classification, while ANN performs the best for com-
bined classification and redshift. The ANN inference results are tested using number counts,
Gaia parallaxes, and other quasar catalogs that are external to the training set. Based on
these tests, we derived the minimum classification probability for quasar candidates which
provides the best purity versus completeness trade-off: p(QSOcand) > 0.9 for r < 22 and
p(QSOcand) > 0.98 for 22 < r < 23.5. We find 158,000 quasar candidates in the safe in-
ference subset (r < 22) and an additional 185,000 candidates in the reliable extrapolation
regime (22 < r < 23.5). Test-data purity equals 97% and completeness is 94%; the lat-
ter drops by 3% in the extrapolation to data fainter by one magnitude than the training set.
The photometric redshifts were derived with ANN and modeled with Gaussian uncertain-
ties. The test-data redshift error (mean and scatter) equals 0.009 ± 0.12 in the safe subset
and −0.0004 ± 0.19 in the extrapolation, averaged over a redshift range of 0.14 < z < 3.63
(first and 99th percentiles). Our success of the extrapolation challenges the way that models
are optimized and applied at the faint data end. The resulting catalog is ready for cosmology
and active galactic nucleus (AGN) studies, and we perform an early study on constraining
the quasar bias function, using its cross-correlation with the CMB lensing. We obtain a bias
function bq(z) = 0.57+0.03

−0.03 (1 + z)2 + 0.07+0.06
−0.13 , which at redshift z = 1.5 gives a bias value

3.63+0.25
−0.85 . Finally, we report 15σ significance of the cross-correlation with the CMB lensing,

which for quasars is one of the highest detections of this signal. We publicly release the
catalogs at
http://kids.strw.leidenuniv.nl/DR4/quasarcatalog.php (KiDS DR4),
http://kids.strw.leidenuniv.nl/DR3/quasarcatalog.php (KiDS DR3).

HTTP://WWW.NCBJ.GOV.PL
http://kids.strw.leidenuniv.nl/DR4/quasarcatalog.php
http://kids.strw.leidenuniv.nl/DR3/quasarcatalog.php
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Streszczenie
Wspomagane metodami uczenia maszynowego budowanie katalogów kwazarów oraz

galaktyk na potrzeby badań kosmologicznych

Szymon Nakoneczny

Prezentujemy dwa katalogi kwazarów zbudowane na podstawie danych z trzeciego oraz
czwartego wydania (DR3, DR4) przeglądu Kilo-Degree Survey (KiDS). Prezentujemy dwie
metodologie, pierwszą do klasyfikacji źródeł w KiDS DR3, oraz drugą, bardziej zaawansowaną,
w której dodajemy dane z bliskiej podczerwieni, estymujemy fotometryczne przesunięcia
ku czerwieni, oraz ekstrapolujemy modele uczenia maszynowego (ML) na magnitudy ciem-
niejsze niż te znane z przeglądów spektroskopowych. Analiza danych z KiDS DR4 produkuje
ostatecznych katalog kwazarów, którego wyniki opisuję na tej stronie. Katalog oparty jest o
optyczne filtry ugri, oraz bliską podczerwień ZY JHKs, a modele ML trenowane są na danych
znanych ze spektroskopowego przeglądu Sloan Digital Sky Survey (SDSS). W 45 milionach
obiektów ograniczonych do detekcji we wszystkich 9 pasmach definiujemy podzbiory infer-
encyjne na podstawie przestrzeni cech zbudowanej z magnitud oraz ich kombinacji. Pokazu-
jemy, że projekcje wysoko wymiarowej przestrzeni cech na dwa wymiary mogą być użyte,
zamiast standardowych wykresów kolor-kolor, w celu wizualizacji wyników. Kalibracji
modeli uczenia maszynowego dokonujemy za pomocą dwóch podzbiorów walidacyjnych:
losowo wybranego z całego zakresu magnitud, oraz ekstrapolacyjnego, do którego wybier-
amy najciemniejsze magnitudy, które celowo wyłączamy z treningu. Takie podejście pozwala
nam na prawidłowe dopasowanie kompromisu między obciążeniem a wariancją. Testujemy
trzy modele ML: las losowy (RF), XGBoost (XGB), oraz sztuczna sieć neuronowa (ANN).
Pokazujemy, że XGB dostarcza najlepszych wyników klasyfikacji, zaś ANN pozwala osiągnąć
najlepsze wyniki dla klasyfikacji i przesunięcia ku czerwieni. Ostateczny katalog, zbu-
dowany za pomocą ANN, testujemy metodą zliczeń, paralaksami z przeglądu Gaia, oraz
zewnętrznymi katalogami kwazarów. Na podstawie tych testów, znajdujemy minimalne
prawdopodobieństwo klasyfikacji, które kalibruje kompromis między czystością oraz kompletnością,
i wynosi: p(QSOcand) > 0.9 dla r < 22 oraz p(QSOcand) > 0.98 dla 22 < r < 23.5. W kat-
alogu znajduje się 158,000 kandydatów na kwazary w bezpiecznym zakresie r < 22, oraz
kolejne 185,000 kandydatów w zasięgu ekstrapolacji 22 < r < 23.5. Na podstawie danych
testowych szacujemy czystość oraz kompletność katalogu na odpowiednio 97% oraz 94%, a
w wyniku ekstrapolacji o jedną magnitudę, kompletność maleje o 3%. Przesunięcia ku cz-
erwieni modelujemy za pomocą rozkładu gaussowskiego, i błąd tej estymacji (średnia oraz
rozrzut) wynosi 0.009 ± 0.12 w bezpiecznym zakresie, oraz −0.0004 ± 0.19 w ekstrapolacji,
policzone jako średnia w dla 0.14 < z < 3.63. Sukces ekstrapolacji stawia wyzwanie temu jak
modele uczenia maszynowego są kalibrowane oraz stosowane do ciemnych obiektów. Kata-
log wynikowy jest gotowy do badań kosmologicznych oraz nad aktywnymi jądrami galaktyk
(AGN), i w niniejszej pracy przedstawiamy pierwsze wyniki oszacowania funkcji biasu z
użyciem korelacji krzyżowej z soczewkowaniem mikrofalowego promieniowania tła (CMB).
Otrzymujemy wynik w postaci bq(z) = 0.57+0.03

−0.03 (1 + z)2 + 0.07+0.06
−0.13 , co dla z = 1.5 daje

wartość biasu 3.63+0.25
−0.85 . Detekcja korelacji krzyżowej wynosi 15σ, co jest obecnie jedną z

najsilniejszych detekcji tego sygnału.

HTTP://WWW.NCBJ.GOV.PL
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1
Introduction

One of the key goals of the ongoing and planned wide-angle sky surveys is to map the large-
scale structure (LSS) of the Universe and derive various cosmological constraints, using dif-
ferent probes such as galaxy clustering or gravitational lensing. The building blocks of the
LSS are galaxies, and among them, quasars (QSOs) stand out as some of the most distant
objects we can observe. Unlike regular galaxies, these extragalactic sources cannot be easily
identified based on their angular sizes because similarly to stars, they are mostly point-like.
We observe QSOs up to very high redshifts because of the accretion of matter on supermas-
sive black holes (Kormendy and Ho, 2013), which leads to enormous amounts of energy
being radiated out. Quasars are important for LSS studies as they reside in dark matter halos
of masses above 1012M⊙ (Eftekharzadeh et al., 2015; DiPompeo, Hickox, and Myers, 2016),
which makes them highly biased tracers of the LSS (DiPompeo et al., 2014; Laurent et al.,
2017). Possible applications of QSOs in cosmology include tomographic angular cluster-
ing (Leistedt, Peiris, and Roth, 2014; Ho et al., 2015), the analysis of cosmic magnification
(Scranton et al., 2005), bias estimation and measurement of halo masses (Shen et al., 2009;
Oogi et al., 2016; DiPompeo et al., 2017; Laurent et al., 2017), cross-correlations with var-
ious cosmological backgrounds (Sherwin et al., 2012; Cuoco et al., 2017; Stölzner et al.,
2018), and even the calibration of the reference frames for Galactic studies (Lindegren et al.,
2018).

At any cosmic epoch, QSOs are sparsely distributed in comparison to inactive galaxies.
Therefore, wide-angle surveys are essential to obtain catalogs containing a sufficient number
of QSOs to be useful for studies where good statistics are important. Previous spectroscopic
surveys, such as the 2dF QSO Redshift Survey (2QZ, Croom et al., 2004) or the Sloan Digital
Sky Survey (SDSS, York et al., 2000; Lyke et al., 2020), provided ∼ 104-105 QSOs. In
spectroscopy, QSO detection and redshift measurement are based on broad emission lines
such as [OIII]λ5007/Hβ, [NII]λ6584/Hα (Kauffmann et al., 2003; Kewley et al., 2013). Many
surveys exploit this approach, including: 2QZ, 2dF-SDSS LRG, and QSO (2SLAQ, Croom
et al., 2009), SDSS, or the forthcoming DESI (DESI Collaboration et al., 2016) and 4MOST
(de Jong et al., 2019; Merloni et al., 2019; Richard et al., 2019).

Object type and redshift are more difficult to extract from photometric broad-band sur-
veys. However, photometric surveys are often the only feasible approach, particularly for
large-scale structure (LSS) studies, which require a high number density and completeness
as well as samples of millions of objects. Upcoming large photometric surveys, such as the
Vera Rubin Observatory Legacy Survey of Space and Time (LSST, Ivezić et al., 2019), will
provide an unprecedented number of objects and depth of observations.

Spectral energy distribution (SED) fitting is a standard approach to analyze photometry
of galaxies with active galactic nuclei (AGN), which include QSOs in particular. It allows
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one to derive physical properties (Ciesla et al., 2015; Stalevski et al., 2016; Calistro Rivera
et al., 2016; Yang et al., 2020; Małek et al., 2020) and estimate photo-zs (Salvato et al.,
2009; Salvato et al., 2011; Fotopoulou et al., 2016; Fotopoulou and Paltani, 2018). The
QSO selection in photometry is commonly based on color-color cuts (Warren, Hewett, and
Foltz, 2000; Maddox et al., 2008; Edelson and Malkan, 2012; Stern et al., 2012; Wu et al.,
2012; Secrest et al., 2015; Assef et al., 2018). More sophisticated and arguably more robust
approaches to QSO selection are the probabilistic methods (Richards et al., 2004; Richards
et al., 2009a; Richards et al., 2009b; Bovy et al., 2011; Bovy et al., 2012; DiPompeo et al.,
2015; Richards et al., 2015), while machine learning (ML) has been gaining popularity in this
respect as well (Brescia, Cavuoti, and Longo, 2015; Carrasco et al., 2015; Kurcz et al., 2016;
Nakoneczny et al., 2019; Logan and Fotopoulou, 2020). Machine learning models have also
been applied to derive QSO photometric redshifts (photo-zs, Brescia et al., 2013; Yang et al.,
2017; Pasquet-Itam and Pasquet, 2018; Curran, 2020).

In the context of the Kilo-Degree Survey (KiDS, de Jong et al., 2013), which is the fo-
cus of our work, the QSO-related studies have so far dealt with high-redshift (z ∼ 6) QSOs
(Venemans et al., 2015), heavily reddened QSOs (Heintz et al., 2018), and selecting QSOs
to search for strong-lensing systems (Spiniello et al., 2018; Khramtsov et al., 2019). We
note that, in general, every QSO present in KiDS multiband catalogs has a redshift estimate
derived with the Bayesian Photometric Redshift code (bpz, Benítez 2000), as such photo-zs
are computed by default for each cataloged object. However, these redshifts are usually not
correct for QSOs as their derivation is optimized at galaxies used for weak lensing studies
(Kuijken et al., 2015) and in particular proper AGN templates are not used in the bpz imple-
mentation. Similarly, the KiDS database does not offer any direct indication of which sources
could potentially be QSOs.

Here, we create quasar catalog from KiDS Data Release 3 (DR3, de Jong et al., 2017)
with an machine learning (ML) approach based on optical data, and we focus on validat-
ing the resulting catalog (Nakoneczny et al., 2019). In case of the KiDS DR4 (Kuijken
et al., 2019), we employ a more complex approach (Nakoneczny et al., 2021), where ad-
ditionally to classification, we also estimate the photometric redshifts based on optical and
near-infrared (near-IR) broad-bands available from the partner VISTA Kilo-degree Infrared
Galaxy (VIKING, Edge et al., 2013). Additionally, we propose a methodology which allows
to test and optimize the models for extrapolation, and test the resulting catalog at fainter mag-
nitudes. Finally, we analyse the correlation function of the catalog resulting from the KiDS
DR4, and estimate the quasar bias function using cross-correlation with the CMB lensing
map (Planck Collaboration et al., 2020b).

In our approach to the KiDS DR3, we make the first step towards systematic studies of the
KiDS quasar population by presenting automated detection of QSOs in the KiDS survey. For
that purpose we employ one of the most widely used supervised machine learning algorithms,
random forest, to detect QSOs in KiDS imaging in an automated way. The model is trained
and validated on spectroscopic quasar samples which overlap with the KiDS DR3 footprint.
We put special emphasis on selecting the most informative features for the classification
task, as well as on appropriate trimming of the target dataset to match the training feature
space and avoid unreliable extrapolation. This is also aided by analysis of two-dimensional
projection of the high-dimensional feature space. The trained algorithm is then applied on the
photometric KiDS data, and the robustness of the resulting quasar selection is verified against
various external catalogs: point sources from the Gaia survey, as well as spectroscopic and
photometric quasar catalogs, which were not used for training or validation. We also verify
the number counts as well as mid-IR colors of the final QSO catalog.

In our approach to KiDS DR4, our main goal is to create a catalog of QSOs with robust
photometric redshift estimates. We test what near-IR imaging brings to classification in terms
of separating QSOs from stars. We aim to fit ML models for the best bias versus variance
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trade-off in order to achieve reliable results at the faint data end, not represented well by the
spectroscopic data used in training. We verify whether randomly selected subsets of spec-
troscopic objects used to test ML models lead to the proper bias-variance trade-off, or if it
is better to also validate based on the faintest objects, which are never seen during training.
This is necessary to assess the level of overfitting, address the problem of extrapolation in
the feature space (a space of n-dimensional feature vectors consisting of, for instance, mag-
nitudes and colors), and provide reliable estimates at the faint data end. We test different
strategies of building features from broad-band magnitudes, find which of the most popu-
lar ML models perform best for classification and redshifts, and model QSO photometric
redshift uncertainties with a Gaussian output layer in an Artificial Neural Network (ANN).

The thesis is organized as follows. In Chapter 2 we describe the data and the methodology
for QSO selection, redshift estimation, extrapolation in the feature space, bias-variance tun-
ing, correlation analysis, and quasar bias estimation; in Chapters 3 and 4, we provide results
of experiments done on a cross-match with spectroscopic data, properties of the final catalog,
and purity-completeness calibration for KiDS DR3 and DR4 catalogs respectively; in Chap-
ter 5 we provide results of correlation functions measurement and quasar bias constraints;
in Chapter 6 we discuss the main findings, strengths, and weaknesses of the approach, and
we outline the possible extensions. In Chapter 4, in order to calculate spatial densities, we
use the flat ΛCDM cosmology based on the Nine-Year Wilkinson Microwave Anisotropy
Probe (WMAP9, Hinshaw et al., 2013) with H0 = 69.3 km/s/Mpc and Ωm = 0.287, while in
Chapter 5, where we perform the correlation analysis, we use flat ΛCDM cosmology based
on the Planck Collaboration et al., 2020a with H0 = 67.4km/s/Mpc and Ωm = 0.315.
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2
Data and methodology

This chapter is based on the publications Nakoneczny et al., 2021; Nakoneczny et al., 2019,
and all the work was done by the thesis autor, unless stated otherwise. In this chapter we de-
scribe the methodology which we use to create quasar catalogs from the KiDS DR3 and DR4,
and perform their auto- and cross- correlation with the CMB lensing in order to constraint the
quasar bias function. We create the quasar catalog from KiDS DR3 with a simpler approach
based on optical data, and we focus on validating the resulting catalog. In case of the KiDS
DR4, we employ a more complex approach, where additionally to classification, we also es-
timate the photometric redshifts based on optical and near-IR data available starting with the
KiDS DR4. Additionally, we propose a methodology which allows to test and optimize the
models for extrapolation, and test the resulting catalog at fainter magnitudes. The chapter is
organised as follows. In §2.1, we describe the KiDS survey, as well as inference and training
sets. We explain the machine learning related methodology in §2.2, while machine learning
pipelines for KiDS DR3 and DR4 are given in the §2.3 and §2.4 respectively. Finally, in §2.5,
we provide methodology related to the correlation analysis and quasar bias estimation.

2.1 Data

2.1.1 Kilo-Degree Survey

KiDS1 is an optical wide-field imaging survey with the OmegaCAM camera (Kuijken, 2011)
at the VLT Survey Telescope (VST, Capaccioli et al., 2012), specifically designed for mea-
suring weak gravitational lensing by galaxies and large-scale structure (Joudaki et al., 2017;
van Uitert et al., 2018; Asgari et al., 2020; Heymans et al., 2020; Hildebrandt et al., 2020;
Wright et al., 2020). It consists of 1350 square degrees imaged in four broad-band ugri filters.
The mean limiting AB magnitude (5 σ in a 2 arcsec. aperture) of KiDS is ∼ 25 in the r band.
The Data Release 3 (de Jong et al., 2017) covers ∼ 447 deg2 and includes almost 49 million
sources in its multiband catalog. The current fourth data release (Kuijken et al., 2019) is the
penultimate one; it covers a total of 1006 deg2 and provides a list of ∼ 100 million (100M)
objects based on the r-band detections. It also includes ZY JHKs photometry from the part-
ner VIKING. The optical depth, wide sky coverage, and multiwavelength imaging make this
survey an ideal resource for QSO science.

Additional discriminatory power for QSO selection and photo-zs could be provided from
mid-infrared bands, such as from the Wide-field infrared Survey Explorer (WISE, Wright
et al., 2010), as shown for instance in Logan and Fotopoulou, 2020. However, in this work
we decide to limit the selection to the 9-band KiDS+VIKING only, as adding the WISE data

1http://kids.strw.leidenuniv.nl

http://kids.strw.leidenuniv.nl
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would severely limit our dataset. For instance, at the r < 23.5 KiDS limit, which we find as
a magnitude limit for our quasar catalog (§3.4), only ∼19% of the sources have a counterpart
in WISE within a 3" matching radius. This fraction decreases even further with an increased
KiDS depth.

2.1.2 Inference set in the optical KiDS DR3

The main features used in the classification process come directly from the KiDS catalog
and consist of the ugri magnitudes and the corresponding colors. As detailed in de Jong
et al., 2017, KiDS data processing provides various photometric measurements of detected
sources. For our purpose we need robust measurements of point source photometry, we
therefore use the GAaP magnitudes (Gaussian Aperture and PSF, Kuijken, 2008) which are
designed to compensate for seeing variations among different filters. Together with additional
photometric homogenization across the survey area, these measurements provide precisely
calibrated fluxes and colors (Kuijken et al., 2015). Combining the four magnitudes and
six colors (one for every magnitude pair) results in ten basic features. Although using both
magnitudes and colors seems redundant with respect to using for example only magnitudes or
only colors, such redundancy does improve classification results. As detailed later in §2.2.2,
we also tested ratios of magnitudes as additional parameters for the classification. Together
with the stellarity index CLASS_STAR (see below), the magnitudes, colors and magnitude
ratios constitute the eventual 17D feature space for classification, in which only the most
relevant features are used.

We note that although a significant fraction of KiDS sources are stars, we always use
magnitudes and colors corrected for Galactic extinction, as our focus is to detect extragalac-
tic sources. The measurements are also corrected for the “zero-point offset” to ensure flux
uniformity over the entire DR3 area2.

Another parameter used in the classification process, which turns out to be very important
for the performance (§3.1), is CLASS_STAR. This is a continuous stellarity index derived
within the KiDS data processing pipeline using SExtractor (Bertin and Arnouts, 1996), which
describes the degree to which a source is extended. It takes values between 1 (point-like, a
star) and 0 (extended, typically a galaxy). Most quasars, except for the rare ones with a
clearly visible extended host, are point-like and therefore have high values of CLASS_STAR.
The reliability of this parameter for separation of point sources from extended ones depends
on the signal-to-noise (S/N) of the objects and resolution of the imaging, therefore it may
fail to identify faint and small galaxies (in terms of apparent values). However, the data
used for the quasar detection in this approach are limited to a relatively bright and high
S/N subsample of KiDS DR3 (as we explain later in this section), where CLASS_STAR is
robust in separating these two main source classes. Indeed, we have verified that for the
training set with known labels (§2.1.4)3, separation at CLASS_STAR of 0.5 would leave a
negligible fraction (0.5%) of galaxies marked as “point-like” and a small number (1.9%)
of stars identified as “extended”. As far as the training-set QSOs are concerned, the vast
majority of them have CLASS_STAR > 0.6. Some quasars with resolved hosts may still be
detected as extended, especially in a survey with such excellent angular resolution as KiDS.
We therefore decided to test the usefulness of CLASS_STAR in the quasar automated selection
and indeed found it very helpful. This is discussed in more detail in §3.1. We would like to
emphasize, however, that in this approach no a priori cut on CLASS_STAR is made in either
the training or inference sample. The QSO classification algorithm filters out most of the

2These offsets are on average ∼ 0.03 mag in the u and i bands, and < 0.01 mag in the g and r bands. See de
Jong et al., 2017 for details.

3This applies equally to validation and test sets, as they are chosen randomly from the general SDSS labeled
sample.
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Table 2.1: Numbers of objects left in the KiDS DR3 inference data after the
subsequent preprocessing steps. See text for details of these cuts.

objects left % of all data
all KiDS DR3 sources 49M 100%

keep only four-band detections 40M 80%
cut at limiting magnitudes

11M 22%
& remove errors > 1 mag

clean up image flags 9M 18%
cut at r < 22 3.4M 6.8%

Figure 2.1: Normalized histograms of the r-band magnitude (left) and the
u − g color (right) for the KiDS DR3 inference dataset (pink solid) and the
KiDS DR3 × SDSS training set (green dashed), both before applying the
r < 22 mag cut. The bimodality of the matched sample is related to SDSS
spectroscopic target preselections, preserved by the cross-match with the

much deeper KiDS.

extended sources, but does identify a fraction of them as quasars. Roughly 1% of the objects
with CLASS_STAR < 0.5 are assigned a QSO label (20k out of 2M). This means that ∼11%
of all our quasar candidates were classified by KiDS as extended.

The KiDS data processing pipeline provides also another star/galaxy separator, SG2DPHOT
(de Jong et al., 2015), which uses the r-band source morphology and generally is more robust
than CLASS_STAR. We have however found that in this particular approach, using SG2DPHOT
instead of CLASS_STAR gives slightly worse classification results. Part of the reason might
be that SG2DPHOT is a discrete parameter, and it provides less information to the model than
the continuous CLASS_STAR.

An additional potentially useful feature in the classification process could be photometric
redshifts (photo-zs). However, KiDS DR3 photo-zs were optimized for galaxies (de Jong
et al., 2017; Bilicki et al., 2018) and are unreliable for quasars, as we indeed verified for
overlapping spectroscopic QSOs. In our approach for KiDS DR4, we address the issue by
deriving more robust QSO photo-zs (see section 2.4 and chapter 4, also see e.g., Yèche et al.,
2010).

Machine-learning methods require data of adequate quality in order to perform reliably.
In addition, in supervised learning, it might be desirable to avoid extrapolation beyond the
feature space covered by the available training set. For those reasons, we apply appropriate
cleaning and cuts on KiDS DR3 data as specified below, to ensure reliable quasar classifica-
tion.

1. Keep only four-band detections



8 Chapter 2. Data and methodology

A fraction of KiDS DR3 sources do not have all the four bands measured. As Machine-
learning models require all employed features to bear a numerical representation, using
sources with missing features would require assigning some artificial values to relevant
magnitudes and colors. As already one missing magnitude means three colors are not
available, even in such a minimal scenario it would significantly reduce the available
information. As we show in §3.1, colors are in fact among the most important features
in our classification procedure, and we cannot afford to lose them. Therefore, we only
use objects with all the four ugri bands measured. This step removes about 20% of the
catalog entries, leaving roughly 40 million sources (Table 2.1).

2. Ensure sufficient signal-to-noise ratio

To avoid working with excessively noisy data which could significantly affect classifi-
cation performance, we first cut the KiDS DR3 data at the nominal limiting magnitude
levels, which are 24.3, 25.1, 24.9, 23.8 in ugri, respectively. Additionally, we require
the photometric errors in each band to be smaller than 1 mag, which roughly corre-
sponds to S/N of 1. These two cuts applied simultaneously on all the bands (i.e., as
a joint condition) are the most strict among other cleaning requirements and together
with the above item #1, leave ∼ 11 million KiDS DR3 objects. However, we note that
due to training set limitations, a further and stricter cut on the r band magnitude is
applied below.

3. Remove flagged objects

The KiDS data processing pipeline provides various flags for detected objects, indicat-
ing possible issues with photometry (see de Jong et al., 2017 for details). In this work,
we take into account IMAFLAGS_ISO_band which are flags delivered by the KiDS
pipeline and include information about critical areas in the images, which likely cor-
rupt single source photometry. Issues such as star halos and spikes are automatically
detected using an algorithm that first finds star positions from the saturation map, and
then builds models of star halos and spikes taking into account the telescope orientation
and the position in the focal plane (the Pullecenella mask procedure, de Jong et al.,
2015). We have carefully examined several images of objects with these flags set and
decided to remove sources indicated by any of the bits4 except for the one for manual
masking, which was valid only for KiDS DR1 and DR2 (de Jong et al., 2015). We
have also considered FLAG_band (a SExtractor flag indicating possible issues in the
extraction of the object) but found no significant deterioration in classification quality
after including sources marked by this flag in the training and inference process. This
cleanup step removes a non-negligible number of sources, about 2 million out of 11
million that were left after the previous step #2.

4. Trim target data to match the training set

The previous steps of data cleaning were of a general nature to ensure adequate KiDS
data quality for classification purposes. A final step is however required and it is spe-
cific to the training sample used. Namely, the SDSS DR14 spectroscopic training set
(§2.1.4) does not reach beyond r ∼ 22 mag (see Fig. 2.1 left panel). Using significantly
deeper inference data than for the training set would require extrapolation, which for
supervised ML might be unreliable and more importantly, its performance would be

4These are: 1 - saturation spike, 2 - saturation core, 4 - diffraction spike, 8 - primary reflection halo, 16 -
secondary reflection halo, 32 - tertiary reflection halo, 64 - bad pixel.
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difficult to evaluate. We address this problem in the approach to KiDS DR4, but here,
we trim the KiDS DR3 data to limit the feature space to ranges covered by training.
As the default cut we adopt r < 22, although we have also experimented with a more
permissive cut in the u − g color, as matching the training and inference sets in this
parameter leads to the removal of fewer objects (see Fig. 2.1 right panel). We provide
more discussion on feature space limitation and our final choices in §2.3.2.

This particular cut significantly limits the size of usable data for the classification, leav-
ing us with 3.4 million KiDS DR3 objects. Such a cut would in fact make unnecessary
the condition on the sufficient S/N described in item #2 above, as KiDS sources with
r < 22 mag typically have very high S/N in all the bands. However, we keep this
condition separately, as it is related to the characteristics of the specific training set
used.

We note that with future deeper QSO training sets, such as DESI (DESI Collabora-
tion et al., 2016) and 4MOST (de Jong et al., 2019), it will be possible to extend the
range of the usable feature space and therefore increase the number density of robustly
identified quasars in KiDS.

Table 2.1 summarizes all the preprocessing steps which led to the creation of the final
dataset on which our quasar catalog is based. We denote this dataset as the target or inference
sample.

2.1.3 Inference set in the optical and near-IR KiDS DR4

In the case of the fourth data release of KiDS survey, which includes the near-IR imaging,
we solved the problem of QSO detection with classification models and derived photo-zs
with regression models. We created one feature set for both classification and regression to
keep the models consistent in predictions. We limited the KiDS data to 9-band detections
(sources which have all the nine bands measured) in order to provide the most reliable set
of features (Section 4.2). In this approach, we do not exclude objects based on image flags
or noise, as those are mostly not present in the bright training data, and we want to make
inference on them to test the extrapolation capabilities of our models in the fainter KiDS
data. During the experiments, we calculated all of the scores, including completeness, in the
limited set of 9-band detections, but the number counts of the final catalog compare com-
pleteness with respect to all possible QSOs. The feature set includes nine GAaP magnitudes,
36 colors, 36 ratios of every magnitude pair, and the following two morphological classifiers:
CLASS_STAR, and the third bit of SG2DPHOT5 (de Jong et al., 2015; de Jong et al., 2017).
In this approach, we divided the SG2DPHOT into separate bits, and found its third bit im-
proving the classification results. In Section 4.2 we describe the experiments which led to
this final set of 83 features. The 9-band detection requirement reduces the number of objects
from ∼100M to ∼ 45M, which creates the inference set.

2.1.4 Training sets from the Sloan Digital Sky Survey

To learn object classification based on photometric data, our machine learning model needs
ground-truth labels. In this work, the labels are taken from the SDSS, and in particular from
the spectroscopic catalog of its Data Release 14 (Abolfathi et al., 2018)6. It includes over 4.8

5Flag values are: 1 (high-confidence star candidates), 2 (objects with FWHM smaller than stars in the stellar
locus), 4 (stars according to S/G separation), and 0 otherwise (galaxies); flag values are summed. See sect. 4.5.1
of de Jong et al., 2015 for details.

6More recent SDSS DR16 does not provide additional overlap with KiDS with respect to DR14.
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million sources with one of three labels assigned: star, galaxy, or quasar. To ensure the high-
est data quality and model performance, from that sample we use only sources with secure
redshifts (velocities) by demanding the zWarning parameter to be null. The cross-match be-
tween the SDSS and KiDS inference dataset was done with the TOPCAT tool (Taylor, 2005)
within a matching radius of 1”.

In KiDS DR3, the final training dataset consists of 12,144 stars, 7,061 quasars and 32,547
galaxies, which totals to 51,752 objects. These relatively low numbers are the consequence
of the small sky overlap between SDSS and KiDS DR3, as the common area covers only
the KiDS equatorial fields at −3◦ < δ < 3◦. In the test phase, from these labeled data
we randomly extract the actual training, validation, and test sets, as detailed in §2.3.1. For
training the final classification model, the entire spectroscopic cross-matched sample is used.
Therefore, whenever parameter distributions or feature space properties are discussed for
“training”, this applies equally to the general training data, as well as to the validation and
test sets.

In Fig. 2.1 we present normalized distributions of the r-band magnitudes (left panel)
and the u − g color (right panel) for the KiDS DR3 inference dataset (pink solid) and the
KiDS DR3 × SDSS training set (green dashed), both before applying the r < 22 mag cut.
This shows clearly that the current SDSS data do not probe KiDS beyond the adopted r-
band cut. On the other hand, the color space is better covered between the inference and
training sample, although here we only showed one particular color as an example. The
matching between the training and inference (target) set in the multidimensional feature space
is discussed in more detail in Section 2.3.2. The bimodality of the KiDS × SDSS seen in both
histograms is related to preselections of the SDSS spectroscopic targets at the various stages
of the survey. In particular the flux-limited (r < 17.77) complete “SDSS Main” sample
(Strauss et al., 2002) gives the first peak in the r-band histogram, while subsequent BOSS
color selections used fainter magnitudes (Dawson et al., 2013). As KiDS is much deeper than
any of the SDSS spectroscopic subsamples, the cross-match preserves these properties.

In the case of KiDS DR4, the training set was similarly derived from cross-matching
the inference data with the SDSS DR14 spectroscopic observations. After removing objects
flagged with warnings by SDSS, we obtained a training subset of 152k objects (69% galaxies,
11% QSOs, 20% stars). The training set is also limited to r ∼ 22 by SDSS (99% of training is
at r < 21.98), which is about three magnitudes brighter than the depth of the KiDS inference
data.

2.2 Machine learning

2.2.1 Models

We tested three of the most popular ML models: random forest (RF, Breiman, 2001), XG-
Boost (XGB, Chen and Guestrin, 2016), and artificial neural network (ANN, Haykin, 1998).
We used Python libraries: scikit-learn, Tensorflow (Abadi et al., 2015), and Keras (Chol-
let, 2015). The RF and XGB are ensemble models, in which classification or regression is
performed using many decision trees. The RF randomizes the trees by choosing a subset
of training data and/or features for each tree. The XGB introduces the boosting procedure
which favors selection of data points for which the model has the highest errors. Addition-
ally, it uses gradients to approximate and minimize an error function. The ANNs consists of
stacked layers of neurons, with nonlinear activation function in each neuron.

We tested two redshift estimation strategies: one model for all the classes and two spe-
cialized models trained separately for quasars and galaxies. In case of the specialized models,
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we assigned zero redshift to stars. We also tested a neural network model with multiple out-
puts for classification and redshifts, which allowed us to solve both problems with only one
model.

2.2.2 Feature engineering

Feature engineering is one of the ways to tune model complexity, and it is widely used in ML
practice (see Bishop, 2006, chap. 6). Already in simpler models, such as linear regression, it
allows for increased nonlinearity by applying a kernel. In more complicated models, it leads
to better adaptation to the given training data and allows the models to extract the true patterns
from the inference data. Feature engineering should not be considered as a limitation of ML
models, but it is a consequence of adjusting the bias versus variance trade-off. However,
excessive feature engineering can lead to overfitting; therefore, a reliable testing method is
required for this approach to work properly and to match its strategy with proper model
regularization.

In applications with hundreds of features, the process of choosing their best subset can
be complex. Here, we use a method of backward elimination (Harrell, 2001). We start
with all the available features, even those that, according to our knowledge, may not be very
important, and apply a model which calculates feature importance (such as for instance the
RF). After initial training, we sort all the features according to their importance and perform
iterative removal of the least important ones (in some groups rather than individually). After
each removal, we validate the performance of the new model. In this way, within a linear
complexity with respect to the number of features, we find the best feature set and optimize
model performance.

Feature importance for a single decision tree (DT) is calculated by simply summing all
the information gain (IG) from a given feature over the whole tree. For the full RF, this value
is averaged between all the DTs for each feature. From this, relative importance of features
can be calculated as percentages, providing quantitative information on their usefulness in
solving a problem.

Machine learning algorithms work more efficiently if they are provided not only with
basic features but also their combinations, if those are correlated with the ground truth data
like labels in case of a classification. A popular way to extend the feature set is to combine
already existing features using simple algebraic operations (Piramuthu and Sikora, 2009).
Colors (differences of magnitudes from various passbands) are one of such ways; another
combination popular in ML is feature ratios, and we tested ratios of magnitudes as an exten-
sion of the feature space. The ratios are widely used in ML and also in astronomy (D’Isanto
et al., 2018).

In the case of KiDS DR4, we also kept the feature engineering fairly simple by consid-
ering only the input features and, for magnitudes, their simplest combinations: differences
(colors) and ratios. More complex feature engineering is possible, but we found this strategy
sufficient to obtain good results, without a risk of overfitting according to our testing meth-
ods. In DR4, we rank features by their feature importance from XGB models, which was
calculated as a sum of gain that a given feature provides to a model in all the splits which
are made based on that feature. We chose XGB in this approach, as it provides better results
in comparison to RF, in case of this more complicated problem which we state for the KiDS
DR4 data. Additional complexity comes from available near-IR imaging, and more complex
validation pipeline, as described below.
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2.3 Classification pipeline for the optical KiDS DR3

Our goal is to detect quasars in KiDS DR3 data, however the training sample from SDSS
provides labels for 3 types of sources: stars, galaxies, and QSOs. These objects usually
populate different regions of the feature space which we use, and we have verified that the
QSO identification is more robust if the model is formulated as a three-class rather than a
binary (QSOs vs. the rest) problem. This is an expected result as in the three-class case we
provide the model with more information.

2.3.1 Validation procedure

In ML methods it is desirable to separate out validation and test datasets from the training
sample, in order to estimate model performance on observations which were not included in
model creation. The validation set is used to select the best model and its parameters, while
the test set is needed to report final scores and should never be employed to choose algorithm
parameters, in order to eliminate the possibility of overfitting to a particular training sample.
In practice, if validation and test scores are significantly different, more regularization should
be applied to a model. In our application, as the test set we choose a random 20% subsample
of the full training set described in Section 2.1.4. The remaining 80% of the training data
are then used in a five-fold cross-validation procedure, in which they are divided into five
separate equally-sized subsets, and four of them are used for the training, while validation
scores are calculated on the fifth subsample. The training process is repeated five times, with
a different subset used for the validation each time. This gives a total of five values for every
metric used, which are then averaged to create the final validation results.

As far as the evaluation metrics are concerned, we use several of them in order to quan-
tify model performance better than would be possible with individual scores. The basic
metric used for three-class evaluation is the accuracy, which measures the fraction of cor-
rectly classified observations. Additionally, as the main goal of this work is to select quasars,
we transform the classification output into a binary one. This is done by simply summing
probabilities of stars and galaxies into a new class called rest, and evaluating the perfor-
mance of the QSO vs. rest problem. To this aim, apart from accuracy applied on the binary
problem, we use the purity (precision), completeness (recall), and F1, a harmonic mean of
precision and recall. If the true positive (TP) is the number of correctly classified positives,
false positive (FP) is the number of incorrectly classified positives, false negatives (FN) the
number of incorrectly classified negatives, then the metrics are given by:

* purity = T P/(T P + FP);

* completeness = T P/(T P + FN);

* F1 = 2 · purity · completeness/(purity + completeness).

In our case, the positive class consists of quasars, and the negative class of stars plus galaxies.
The last binary metric we use is the area under the receiver operating characteristic curve
(ROC AUC) based on the output probability for the quasar class only. The ROC curve is
created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various
probability threshold settings. TPR is the same value as completeness, while FPR is also
known as the probability of false alarm and can be calculated as FPR = 1 − speci f icity =
1−T N/(T N + FP). The last validation tool used here is the confusion matrix, which shows
relations between ground-truth and predicted labels for the multiclass problem. These metrics
are used in our machine learning experiments both to select the most appropriate algorithm
and set of features.
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2.3.2 Feature space limitation

In addition to selecting the most relevant features, we need to make sure that the training
data cover the feature space sufficiently well for the classification in the inference data to be
robust. We already discussed in Section 2.1.4 that the SDSS training data are much shallower
than the full KiDS, therefore in this approach the KiDS data is limited to r < 22 mag to avoid
extrapolation. In this subsection we provide details on feature space limitation by analyzing
its full multidimensional properties.

One can understand machine learning models as complex decision boundaries in the
training feature space. The models are expected to learn true patterns, which should then
extend their applicability to new datasets, such as the KiDS inference sample in our case.
However, for the points which lie outside of the original region of feature space for which
decision boundaries were created, model predictions may implement a classification function
extrapolated from the training data, which may then not agree with the patterns outside of
the training set. The most straightforward solution is to simply match the inference dataset
to the training sample. In our case, the simplest approach is to limit the KiDS DR3 data to
r < 22 mag. However, one could also work in color space only, without using magnitudes,
and perform a cut of u− g > 0 instead (see right panel of Fig. 2.1), which would significantly
extend the inference dataset, giving about twice as many entries than the 3.4 million in the
fiducial sample limited to r < 22. Below, we show why a cut in the r-band magnitude is more
appropriate for our model than a cut in the u − g color.

Cuts performed in single features allow for a better match between the training and in-
ference sets in these particular dimensions. However, as the final classification is performed
in a space of significantly larger dimensionality, the usefulness of such an approach is rather
limited. A match between individual features does not have to imply proper coverage of the
full feature space. A simple counterexample is a 2D square covered by data points drawn
from a 2D Gaussian distribution and separated into two subsets by a diagonal. In such a case,
the histograms of single features show overlap of data in individual dimensions, while in fact
there is no data from two subsets overlapping in 2D at all. Therefore, we look in more detail
at coverage in the multidimensional feature space of the training and inference data. This is
done by projecting the feature space onto two dimensions using the t-distributed stochastic
neighbor embedding (t-SNE, Maaten and Hinton, 2008) method.

There are many ways of mapping N-dimensional feature spaces onto 2D projections. A
popular one in astronomy is Self Organizing Map (SOM, Kohonen, 1997), and a relevant
example of its usage is the mapping of multicolor space to visualize which regions are not
covered by spectroscopic redshifts (Masters et al., 2015). Here, we use an another advanced
visualization method, the t-SNE, which finds complex nonlinear structures and creates a pro-
jection onto an abstract low-dimensional space. Its biggest advantage over other methods is
that t-SNE can be used on a feature space of even several thousand dimensions and still cre-
ate a meaningful 2D embedding. Moreover, unlike in SOM where datapoints are mapped to
cells gathering many observations each, in t-SNE every point from the N-dimensional feature
space is represented as a single point of the low dimensional projection. This makes t-SNE
much more precise, allowing it to plot the exact data point values over visualized points
as different colors or shapes, making the algorithm output easier to interpret. Some disad-
vantages of using t-SNE are its relatively long computing time and its inability to map new
sources added to a dataset after the transformation process, without running the algorithm
again.

In case of ML methods which use many features at once during the calculations, it is
useful to normalize every feature in order to avoid biases related to their very different nu-
merical ranges (such as for magnitudes vs. colors). This does not apply to RF, which uses
only one feature in each step of data splitting; however, it does affect the t-SNE algorithm
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Figure 2.2: t-SNE visualization of the KiDS DR3 training dataset. The plot
illustrates a projection of the multidimensional feature space onto a 2D plane,
where x and y are arbitrary dimensions created during the visualization pro-
cess. Labeled training data are mapped with three different colors as in the

legend.



2.3. Classification pipeline for the optical KiDS DR3 15

Figure 2.3: t-SNE visualization of the KiDS DR3 catalog feature space.
Left: data points with SDSS labels from the training set (green and light and
dark blue) together with those from the inference sample without training
coverage (pink). Right: results of applying magnitude and color cuts on the
inference sample. The darkest color shows objects removed by both r < 22
and u − g > 0 criteria simultaneously, colors in between stand for objects
removed by only one of those cuts, and the lightest points are left after the

cuts.
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which calculates distances based on all available features. In order not to artificially increase
the importance of the features with larger numerical values, we always scale every feature
individually to the range [0, 1], as a preprocessing step in the visualization. The transforma-
tion of each feature is given by F′i = (Fi − Fmin)/(Fmax − Fmin), where F stands for a given
feature, Fi is its value for the i-th data point, and Fmin and Fmax represent the minimum and
maximum values of this feature in a considered dataset.

Our first t-SNE visualization is applied to the KiDS DR3 training dataset, using the full
17D feature space selected in Section 2.2.2, and it gives important information whether the
automated quasar detection can be performed at all in the feature space provided by KiDS
DR3. As shown in Fig. 2.2, most of the quasars form their own cluster in the 2D projection,
while some do indeed overlap with stars. This does not necessarily mean that those obser-
vations are not distinguishable by classification models which work in the original feature
space, but it does point at a problem that perhaps additional features should be added, such as
magnitudes and colors at other wavelengths than the currently used ugri ones. We study this
issue in the extended approach for the KiDS+VIKING data in the fourth data release (section
2.4 and chapter 4).

We now turn to a comparison of the training and inference datasets. For that purpose
we join the training set with a random subsample of the inference data of similar size as
the training (this is to speed up the computation which for the full KiDS DR3 would be
very demanding). In Fig. 2.3 we show projections of the full 17D feature space for the
dataset constructed this way. Using a new dataset required creating a new visualization,
meaning that x and y axis in this figure are independent of the ones present in the training
set visualization (Fig. 2.2). The left panel includes SDSS labels for the training part of data
(green and light and dark blue dots), and “not SDSS” (pink) standing for inference data which
covers feature space outside of the training. Here, the inference data have no magnitude or
color cuts applied except for those related to the basic data cleaning (items #1-#3 in Section
2.1.2). This visualization confirms that a large part of feature space in the inference dataset
would not be covered by the training if no additional cuts were applied on the target KiDS
sample.

In the right panel of Fig. 2.3 we illustrate the effect of magnitude and color cuts on the
inference data. The darkest color indicates objects removed by both r < 22 and u − g > 0
criteria simultaneously, colors in between show objects clipped by demanding only a single
cut, while the lightest points are left after applying any of the cuts. By comparison with the
left panel, we clearly see that the r-band cut is much more efficient in removing the part of
the feature space not covered by training than the cut in u − g. It is also worth noting that
the color cut would also remove some quasar data points from the feature space covered by
training, which is much less the case for the magnitude cut. This is related to the flux-limited
character of the SDSS spectroscopic QSOs.

2.4 Classification and photo-z pipeline for the optical and near-
IR KiDS DR4

2.4.1 Inference subsets

In this section we define the inference subsets for KiDS DR4 based on feature set considera-
tions. The training set we use is a small subset of the KiDS inference data and does not fully
cover the feature space. Inference on parts of the feature space not covered by the training
data may result in the deterioration of results or a complete failure, due to new combinations
of features or completely new feature values. For continuous features, such as magnitude,
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Figure 2.4: Normalized histograms of the CLASS_STAR stellarity index in
the training (KiDS DR4 x SDSS) and inference (KiDS DR4) datasets. The
intermediate values represent failures of the morphological classifier. Those
values are not commonly present in the training data, thus we cannot expect
the ML models to work correctly for objects with such index values. We
consider the sources in between the red dashed lines as unsafe for the infer-

ence.

we may expect well-generalized models to extrapolate with deteriorating quality of the esti-
mations. In case of discrete features, whose new values cannot be understood based on the
ones available in training, supervised ML models may fail completely. We therefore define
inference subsets based on how feature coverage changes from training to inference data and
how this can affect the ML models.

The morphological classifiers tend to fail at the faint data end. We used them to achieve
the highest accuracy at the bright end, and as a proxy for data quality at the faint end. The
SExtractor-based stellarity index has a continuous distribution between zero and one, with in-
termediate values pointing to classifier failure. Because the failures are almost not present in
the bright training data, ML models do not understand their meaning (Fig. 2.4). We therefore
only consider the stellarity index ranges (0, 0.2) and (0.8, 1) covered by the training data as
safe for the inference. Choosing cuts which admit more objects to the safe inference subset
might increase completeness at the cost of purity, while stricter cuts do the opposite. We find
empirically that using only the third bit of the SG2DPHOT provides the best improvement in
our results. Cleaning the uncertain stellarity index values removes most of the SG2DPHOT
failures.

The magnitude range r < 22 is covered by the training data, whereas for r > 22 we expect
ML models to extrapolate with deteriorating quality. We define three inference subsets based
on the feature space coverage, morphological classification quality, and the r-band depth of
the survey. Firstly, the safe subset is r < 22 and CLASS_STAR < (0.2, 0.8); secondly, the
extrapolation subset is r ∈ (22, 25) and CLASS_STAR < (0.2, 0.8); and lastly, the unsafe
subset is r > 25 or CLASS_STAR ∈ (0.2, 0.8). It is a much more complex approach then the
standard one which we employ for KiDS DR3.

We visualize the KiDS DR4 feature space and the inference subsets with t-SNE in Fig. 2.5.
We created the visualization with the same set of 83 features that are used in classification
and redshift estimation in order to visualize the same feature space. Due to the computational
complexity of t-SNE, we took 8k random objects from KiDS data and merged them with 4k
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Figure 2.5: t-SNE projections. Left: KiDS DR4 inference subsets. Right:
SDSS spectroscopic classification. The visualizations were made on subsets
of 12k objects. The real density of objects at any part of the feature space is
3.8k times higher than visualized. We can see three main groups. The point-
like objects cover the top part, extended ones are located at the bottom, and
those with undetermined morphology are placed in the middle, in the unsafe
subset. The spectroscopic data cover only the bright part of the photomet-
ric data; this illustrates the extrapolation problem to address with machine
learning. The results of the inference are later investigated on similar plots
(Section 4.5), which we consider a more robust approach than investigating

color-color diagrams.
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Figure 2.6: Distribution of the KiDS DR4 inference subsets over the r mag-
nitude. The limit of the SDSS training data, r = 22, defines the lower limit
of the extrapolation subset. The morphological classifier failure and sources
beyond survey depth (r > 25) provide the unsafe subset (fig. 2.4). The ex-
trapolation subset is complete up to r < 23.5. The safe subset covers 21% of

data, extrapolation 45%, and unsafe 34%.

random objects from KiDSxSDSS cross-match to visualize the spectroscopic classes, which
are sparse in the whole KiDS data, and put emphasis on the much fainter inference data.
The plots show the main groups of spectroscopic classes and their placement over the whole
feature space. The safe subset at r < 22 matches the part of the feature space covered by
the training data, confirming that a single cut on the r magnitude assigns proper limits to the
other magnitudes, colors, and ratios; the results are the same as in our simpler approach for
KiDS DR3, where we matched only the ugri magnitudes, colors, and ratios. The main star
and QSO groups are separated in the training data, but not in the whole KiDS data. The first
part of the extrapolation subset at r ∈ (22, 23) is located close to the training data, and it may
provide reliable estimations. The rest of the extrapolation set covers fainter and more com-
plicated parts of the feature space, such as the joining space between QSO and star groups at
23 < r < 24, thus such objects have a lower chance of their classification predictions being
correct.

We used the 2D visualization to investigate estimation performance of the ML models.
The models work with highly dimensional data, which makes it difficult to visualize the
decision boundaries. We did not investigate the color-color plots due to the large number of
possible combinations and the required domain knowledge of how to interpret them. Instead,
the manifold learning, such as t-SNE, visualizes nonlinear data structures and this allows us
to understand the models as well as, or better than, it would be possible with the color-color
plots. Additionally, we used the embedding to have insight into the extrapolation part of the
feature space, which cannot be tested with methods based on ground-truth data.

Figure 2.6 shows r magnitude distributions for the inference subsets. The safe subset was
cut at r = 22, while the extrapolation and unsafe subsets overlap in magnitudes. We can see
that the extrapolation subset is complete to r < 23.5, which puts a completeness limit on our
catalog. We expect that the number counts of QSOs identified using the currently available
training sets would become incomplete at r > 23.5.
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Table 2.2: Train and test subsets of the KiDS DR4 x SDSS data. We selected
the faintest 10% of the data as the faint extrapolation test. This splits the
training data at r = 21.3. We used the same amount of objects at r < 21.3 as

in the faint-end for the random test.

size quasar galaxy star
train r < 21.3 105k 11k (11%) 71k (68%) 23k (22%)
test random r < 21.3 13k 1.5k (12%) 8.8k (67%) 2.8k (21%)
test faint 21.3 < r < 22 13k 3.3k (25%) 7.2k (55%) 2.6k (20%)

2.4.2 Validation procedure

Proper design of the testing methods is one of the main goals of this work so as to make sure
we did not overfit the models. Validation data have to differ from the training set to ensure
proper model generalization. A randomly chosen sample of data which densely covers the
feature space might not fully show the overfitting effects, and this might have a very negative
influence on the inference at the faint data end, both for classification and photo-zs. We used
additional spectroscopic surveys to introduce some differences from the training data and
tested the final predictions (Section 4.5.4). During the experiments, we used internal data
characteristics to differentiate training from validation. The approach is similar to time series
processing, where validation data should consist of dates later than the training ones. Sim-
ilarly, we chose the faintest objects to test the regularization of the models. Another option
would be to use highest-redshift objects, chosen separately for each class as they reside at
different ranges of redshift, which would test the prediction of values not seen during train-
ing. However, radial velocities of stars measured by SDSS obviously do not correlate with
photometry and we would not observe any variation in star colors between the training and
validation data. As magnitude correlates with redshift in the case of QSOs and galaxies, we
expect the faint test to evaluate the extrapolation accuracy of ML models with respect to the
estimated redshift values. Figure 2.7 explains the whole methodology in blocks illustrating
experiments as well as inference and catalog testing.

Table 2.2 summarizes the training and validation sets. We selected the faintest 10% of the
training data as a faint extrapolation test, and the same amount of random objects from the
rest of the training data as a random test. Both tests allowed us to correctly tune the models
for a bias-variance trade-off and check how the estimations deteriorate when we extrapolate
to fainter magnitudes. The faint extrapolation test has a higher contribution of QSOs, which
adds to differences between the training and validation. The faint extrapolation test sample in
the spectroscopic data, at 21.3 < r < 22, should not be confused with the faint extrapolation
inference data at r > 22.

We tested QSO redshifts on two subsets: the true spectroscopic QSOs from SDSS and
QSO candidates from the output of an ML model. The QSO candidates may contain true stars
and galaxies due to misclassification. As we are solving two distinct tasks, classification to
identify QSOs and regression to estimate their redshifts, a test of QSO candidates evaluates
the consistency between classification and redshift models and it requires both class and
redshift to be assigned correctly. This test informs us about the robustness of the final catalog,
and we consider redshift errors obtained in the set of QSO candidates as the most important
metric for model selection.

We used the following classification metrics7 (scikit-learn, Pedregosa et al., 2011): accu-
racy for the three-class classification problem (QSO, galaxy, and star) as well as purity and
completeness for QSO detection. For redshifts, we used:

7https://scikit-learn.org/stable/modules/model_evaluation.html

https://scikit-learn.org/stable/modules/model_evaluation.html
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Figure 2.7: KiDS DR4 methodology diagram. The procedure consists of
three main parts: experiments as well as inference and catalog tests. The
experiments are based on the cross-match between KiDS and SDSS data, and
they include the repeatable process of training and evaluating ML models.
The training is based only on the train and random test subsets, while the
hyper-parameter tuning uses both random and faint extrapolation tests. The
best hyper-parameters found are used in the inference to train new models,
now on the whole range of magnitudes available in the training data. The
raw predictions were then tested with number counts and Gaia parallaxes
to calibrate the final catalog with probability cuts for the optimal purity-

completeness trade-off.
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• the mean squared error

MS E =
1
N

Σ(zspec,i − zphoto,i)
2, (2.1)

• R-squared

R2 = 1 −
S S RES

S S TOT
= 1 −

(zspec,i − zphoto,i)2

(zspec,i − z̄spec)2 , and (2.2)

• the redshift error
δz =

zphoto − zspec

1 + zspec
, (2.3)

where S S RES is the residual sum of squares, S S TOT is the total sum of squares, zspec is the
true spectroscopic redshift, zphoto is the predicted photometric redshift, and z̄spec is the mean
spectroscopic redshift of a given validation sample.

We performed 100 bootstrap samplings on random and faint extrapolation tests to make
sure that the mean standard errors (σ/

√
100) are at about 3-4 decimal places depending on

the metric. This gives statistical relevance to the precision with which we report the results.
Due to differences between the training and inference data, we used several methods to

test the final catalog: number counts, spatial densities, GAIA parallaxes, and comparison
with external quasar catalogs. This way we ensure that any decision on model parameters
or feature engineering does not lead to issues in the final inference. Those testing methods
allowed us to calibrate the purity versus completeness ratio of the final quasar catalog by set-
ting the minimum classification probability. With calibrated classification, the photometric
redshifts might be a good approximation of the real redshift distribution, but further calibra-
tions are possible. We test the photometric redshift distribution for quasar bias constraints in
the section 5.2.

2.5 Correlation analysis

The resulting catalogs of quasars are characterized by high surface density, ∼ 157deg−2 at
r < 22 and ∼ 309deg−2 at r < 23.5 in the KiDS DR4 (see tab. 4.3), in comparison to, for
instance, ∼ 80deg−2 in the SDSS DR16 (Lyke et al., 2020). It provides an opportunity to
study large scale structure at redshifts higher than 2, and our goals here are to perform an
early study in order to validate the catalog through its correlation analysis and estimate the
quasar bias function.

We use the publicly available CMB lensing convergence map provided by the Planck
Collaboration et al., 2020b. The data are provided in the form of spherical harmonic coeffi-
cients κlm, which we transform into a HEALPix map (Górski et al., 2005) with the resolution
parameter Nside=512, the same as for the galaxy overdensity map.

2.5.1 Theory

The structure of this section is based on Alonso et al., 2021. We define and calculate the map
of sky-projected quasar overdensity as

δq(n̂) =
Nq(n̂) − N̄q

N̄q
, (2.4)
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where n̂ is position on the sky, Nq is the number of quasars, and N̄q is the mean number of
quasars. It relates to the three dimensional overdensity field ∆g through

δq(n̂) =
∫

dz
dp
dz

∆q(χ(z)n̂, z), (2.5)

where χ is the comoving radial distance, and dp
dz is the redshift distribution of the galaxy

sample normalized to 1 when integrated over the z.
The lensing convergence κ(n̂) quantifies the distortion in the trajectories of the CMB

photons caused by the gravitational potential of the intervening matter structures, and is pro-
portional to the divergence of the deflection in the photon arrival angle α : κ = −∇ · α/2.
As such, κ is an unbiased tracer of the matter density fluctuations ∆m(x, z), and is related to
them through:

κ(n̂) =
∫ χLS S

0
dχ

3H2
0Ωm

2a
χ
χLS S − χ

χLS S
∆m(χ(n̂), z(χ)), (2.6)

where Ωm is the fractional matter density, a = 1/(1+ z) is the scale factor, H0 is the Hubble
constant, and χLS S is the comoving distance to the surface of last scattering.

Any three dimensional field (U) can be projected onto a sphere using a kernel Wu

u(n̂) =
∫

dχWu(χ)U(χn̂, z(χ)). (2.7)

Any such projected quantity can be decomposed in terms of its spherical harmonic coeffi-
cients uℓm, the covariance of which is the so-called angular power spectrum (Cuv

ℓ
), which is

a Fourier transform of a correlation function. The angular power spectrum can be related to
the power spectrum of the 3D fields PUV through

Cuv
ℓ =

∫
dχ
χ2 Wu(χ)Wv(χ)PUV(k =

ℓ+ 1/2
χ

, z(χ)), (2.8)

where PUV(k, z) is the variance of the Fourier coefficients of U and V . In this formalism, for
the two fields under consideration, the radial kernels are given by

Wq(χ) =
H(z)

c
dp
dz

, (2.9)

Wκ(χ) = fℓ
3H2

0Ωm

2a
χ
χLS S − χ

χLS S
Θ(χLS S − χ), (2.10)

where H(z) is the expansion rate, Θ(x) is the Heaviside function, and fℓ is the scale-
dependent prefactor given by

fℓ =
ℓ(ℓ+ 1)

(ℓ+ 1/2)2 ≃ 1, (2.11)

which is relevant only for ℓ ≲ 10, and accounts for the fact that κ is related to ∆m through the
angular Laplacian of the gravitational potential Φ.

Eq. 2.8 is only valid only in the Limber approximation, i.e. for the case of small angular
scales and spatial distances (Limber, 1954), where the spherical Bessel functions can be
approximated by

jℓ(x) ≃
√

π

2ℓ+ 1
δ(x − ℓ − 1/2). (2.12)

This is accurate when the radial kernels Wu are broader than the typical correlation length of
the density inhomogeneities, as is the case for both δq and κ.
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In order to analyse the matter distribution using quasars as its tracers, we use bias func-
tion which relates the auto- and cross-correlation between the matter and quasar overdensity,
Pgg(k, z), Pgm(k, z), Pmm(k, z). We assume a scale independent bias function bq(z), such
that:

Pgm(k, z) = bq(z)Pmm(k, z), (2.13)

Pgg(k, z) = b2
q(z)Pmm(k, z). (2.14)

We use the range of the multipoles ℓ smaller than 550, where the non-Gaussian contri-
butions to the covariance matrix can be neglected (e.g. Alonso et al., 2021). Finally, we
subtract the shot noise from the auto-correlation, due to discrete nature of quasar number
counts, calculated as 4π fsky

N where fsky is the fraction of the observed sky and N stands for the
total number of objects (e.g. Alonso et al., 2019).

To compare the observed and theoretical power spectra, we use a Gaussian likelihood
given by

χ2 = −2 log p(d|q) = (d − t(q))TCov−1(d − t(q)), (2.15)

where d denotes all measured power spectra, and t(q) are the theoretical predictions for a set
of parameters q. We report significance of the Cqκ detection as a square root of the difference
in χ2 between a null hypothesis and the best fit model (

√
∆χ2).

2.5.2 Quasar application

The key problems we are interested in are as follows:

1. Measuring the correlations Cqq and Cqκ under assumptions of the perfect purity and
completeness of the catalog

2. Testing if additional quasars from the extrapolation range of the ML models (r > 22)
allow to obtain higher significance of the correlation functions

3. Putting constraints on the QSO bias function

In order to test the extrapolation of the catalog to magnitudes fainter than the SDSS limit
(r > 22), we test the catalog limited to r lower than 21, 22, 23, and 23.5 (as suggested by the
tests in §4.5). Additionally, we test different quasar selection probabilities, which control the
misclassification rate with stars and change the shape of the auto-correlation power spectrum.

In order to constrain the bias function, we fit theoretical power spectra to Cqq and Cqκ

based on the redshift distribution resulting from the photo-z estimates, while using two de-
grees of freedom for the bias model, namely bq(z) = A(1 + z)2 + B, as suggested in the
literature (e.g. Sherwin et al., 2012).

We use the pseudo-Cl estimator (Peebles, 1973; Hivon et al., 2002) implemented in
the NaMaster library (Alonso et al., 2019). For the theoretical computations, we use the
Core Cosmology Library (CCL, Chisari et al., 2019). We model the matter power spec-
trum using the HALOFIT parameterization (Takahashi et al., 2012) as implemented in the
CAMB Boltzmann code (Lewis, Challinor, and Lasenby, 2000). We run the Monte Carlo
Markov Chains (MCMC) implemented in the emcee library (Foreman-Mackey et al., 2013).
We assume a flat ΛCDM cosmology based on the Planck Collaboration et al., 2020a with
H0 = 67.4km/s/Mpc and Ωm = 0.315.
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3
Quasar catalog in the optical KiDS
DR3

This chapter is based on the publication Nakoneczny et al., 2019, and all the results were
obtained by the thesis author, unless stated otherwise. In this chapter, we show the results
of classification and the properties of the quasar catalog from the KiDS DR3 described in
§2.1.2, using methodology outlined in §2.2 and §2.3. The chapter is organized as follows.
§3.1 shows the feature selection results, §3.2 describes the model selection results, §3.3 gives
the classification results on the internal tests, and, finally, §3.4 evaluates the final catalog
using external testing methods and provides its properties.

3.1 Feature selection

We use methodology from §2.2.2 to perform feature selection. We verify the usefulness of
a large number of features from the KiDS DR3 database, such as ugri magnitudes, their
differences (colors), their ratios, and also fluxes in all available apertures, observation errors,
ellipticity, as well as star/galaxy separators. By applying the method of feature importance
evaluation, we create the final feature set which provided the best model performance. It
consists of 17 features in total: four ugri magnitudes, six resulting colors, six magnitude
ratios, and CLASS_STAR. Figure 3.1 quantifies the feature importance in percentages. The
stellarity index is a very useful feature, and its role is to provide a nearly perfect separation
between galaxies and point-like objects like stars and quasars. Importances of colors and
ratios for the same magnitude pairs are similar, which means that they are similarly useful in
providing information to the model.

The results illustrated in Fig. 3.1 show that magnitude values are of much less importance
for the classification than colors and magnitude ratios. Therefore, in addition to the fiducial
approach where all the listed features were used, we have experimented with a classification
setup without magnitudes. In such a case, the purity and completeness of the quasar classi-
fication measured on the test data were worse by ∼ 1.5%, which is mostly due to increased
confusion with stars. We also tested the no-magnitude model by generating its predictions
on the inference set and comparing the results with those where the whole feature set was
used. Only 67% of quasar candidates identified by the model which includes magnitudes
were also classified as QSOs in the “color-only” case, and almost all of the rest were clas-
sified as stars. Based on these findings, we conclude that the model in which magnitudes
are not used performs worse, and in particular leads to a higher rate of misclassification with
stars. Our default approach is therefore to use all the features shown in Fig. 3.1.
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Figure 3.1: Features of the final model sorted according to their importance.

Table 3.1: A comparison of the test results for different models, achieved on
the SDSS-based test set separated from the training and validation data. See

Section 2.3.1 for details of the metrics.

three-class: accuracy QSO vs. rest: F1
RF 96.56% 88.67%

XGB 96.44% 88.12%
ANN 96.28% 87.63%

Figure 3.1 indicates also that among the four KiDS DR3 passbands, the u band is of least
importance for our classification task. This is also the band which has the largest fraction of
missing or excessively noisy observations, removed at the data preparation stage. One could
therefore attempt classification based on only gri bands, which would give larger training
and inference datasets than in our case (i.e., fewer sources would have been removed in the
procedure described in Section 2.1.2). In the present application, this would however lead to
significant limitation of the feature space, removing in total 7 of the 17 features.

3.2 Model selection

We use methodology from §2.2.1 to perform model selection. In the case of RF, the best
results are usually achieved by building fully extended trees with leafs belonging only to one
class, which also provided the best results for our work. We chose entropy as the function
to measure the quality of a split, and 400 trees in the model as we did not observe any
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Table 3.2: Evaluation metrics for KiDS DR3 calculated from the SDSS-
based test set separate from the training and validation data.

classification type metric score
three-class accuracy 96.6%

QSO vs. rest

accuracy 97.0%
ROC AUC 98.5%

purity 90.8%
completeness 86.6%

F1 88.7%

Figure 3.2: Normalized confusion matrix of the KiDS DR3 classification
calculated for the SDSS test sample.

performance gain above this value. For XGB, we obtained good results when using 200
estimators of depth 7 and trained with a 0.1 learning rate, while artificial neural network
was built with 2 hidden layers of 20 neurons each, using the rectified linear unit (ReLU)
activation function. Table 3.1 shows a comparison between the model performances; for
details of the model testing procedure and evaluation metrics see Section 2.3.1. We observed
small differences between the performance of different models, with RF generally performing
best. Such model hierarchy and small differences in scores are expected for this kind of a
dataset with a rather low number of features and classes to predict.

We decided to choose random forest as the final classifier. This decision was based
not only on the model performance, but also because RF does not require time-consuming
selection of the best training parameters. It also provides a measure of feature importance,
offering a relatively fast and straightforward way of choosing the most appropriate features.

3.3 Classification results

The classification results are tested as described in Section 2.3.1. As far as the evaluation
metrics are concerned, we measure the accuracy for the three- and two-class (QSO vs. rest)
problems, while the ROC AUC, precision, completeness and F1 are provided only for the



28 Chapter 3. Quasar catalog in the optical KiDS DR3

Figure 3.3: Redshift distribution of SDSS quasars present also in our KiDS
DR3 inference sample, separated into the classes predicted by our model.
The solid purple line shows correctly classified QSOs, while the orange
dashed and green dot-dashed are for true quasars misclassified as stars and

galaxies respectively.

binary case. All the scores are listed in Table 3.2. Accuracy of the algorithm is very similar
in both two- and three-class cases and amounts to almost 97%. The ROC AUC provides a
very high value of ∼ 99%. Purity of the final catalog is estimated to be ∼ 91%, as the quasar
test sample is contaminated with ∼ 7% stars and ∼ 2% galaxies. The completeness is a little
bit lower, ∼ 87%. The F1 measure gives then ∼ 89%.

Figure 3.2 visualizes the classification results in the form of a normalized confusion ma-
trix (CM), from which more information can be extracted. In the case of a normalized CM,
cell values are given as percentages which sum up to 100% in each row. This gives complete-
ness values on the diagonal for each of the classes. From the top row, it is clear that almost all
the galaxies are classified correctly, and in the case of stars, a small fraction is misclassified
as quasars, which reduces the purity of the QSO catalog. Quasars themselves are the most
prone to misclassification, as about 13% of them are assigned either star or galaxy labels,
which translates to the incompleteness of final QSO sample.

In order to better understand the reasons for misclassification, we examine the redshift
ranges at which the quasars are assigned incorrect classes. Figure 3.3 compares redshift
distributions of the true SDSS quasars which were classified as QSOs (solid purple), or mis-
classified as stars (dashed orange) or as galaxies (dash-dotted green). As expected, the QSO-
galaxy mismatch happens predominantly at very low redshifts, where the QSO host galaxies
can have large apparent size and flux. The flux-limited nature of the spectroscopic train-
ing quasars means that at low redshifts, intrinsically less luminous QSOs are included, and
the flux of the host galaxy can be comparable or even dominant over that from the AGN.
An additional possible explanation is that although we do not explicitly use redshifts in the
classification, fluxes and colors of galaxies and quasars are correlated with redshift, so the
classification model indirectly learns this relation. Therefore, as the training data are domi-
nated at low redshift by galaxies, this can be problematic for the model.

The results described in this paragraph were obtained by Aleksandra Solarz, one of the
co-authors of the Nakoneczny et al., 2019. For better insight into the galaxy/QSO mismatch,
we have inspected spectra of 100 randomly chosen sources which were labeled as QSOs by
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SDSS but classified as galaxies by our algorithm. These objects show signs of AGN emission
in the spectrum (broadened lines and prominent high ionization lines), however also the
D4000 break and the calcium doublet are visible, characteristic of older stellar populations in
the host galaxy. As our classification scheme does not use spectra, the shape of the continuum
plays a crucial role in the performance. For that reason, when the emission of the host galaxy
is detectable, the SDSS AGNs are often treated by the algorithm as galaxies, regardless of
clear presence of AGN signatures in the spectrum.

Regarding QSOs incorrectly assigned with a star label, this happens at specific redshift
ranges, such as 2.2 < z < 3.0, where it is difficult to distinguish quasars from stars with
spectral types spanning from late A to early F using broad-band optical filters (Richards et
al., 2002; Richards et al., 2009a). This is exactly the redshift range where we observe the
most of the star-QSO misclassification. The problem in not present if we add the near-IR
imaging present in the KiDS DR4, as described in the next chapter.

The above analysis concerned the completeness of final QSO sample as a function of
redshift. At present we cannot examine a relation between purity and redshift, as we would
have to know the redshifts assigned to quasar candidates, including those which in fact are
stars or galaxies. As already mentioned, presently in KiDS, the quasars do not have robust
photo-zs (see e.g., Fotopoulou and Paltani, 2018). We address this problem in our approach
to KiDS DR4. However, for the redshift estimation to be robust, additional near-IR data will
be needed.

3.4 Catalog properties

In this Section we present and discuss the final quasar selection results in KiDS DR3. All the
sources from our inference dataset of 3.4 million KiDS objects were assigned probabilities of
belonging to the three training classes (star, galaxy or quasar). By selecting quasars as those
objects which have pQSO > max(pstar, pgal), we have obtained 192,527 QSO candidates.
Here we discuss the properties of this catalog. This is done by first calculating statistical
measurements on the test set extracted from the general training sample but not seen by the
classification algorithm. The final dataset is also cross-matched with data from the Gaia
survey to examine stellar contamination, and with several external quasar catalogs to probe
other properties of our sample. As a test for completeness, we analyze number counts in the
final QSO catalog.

3.4.1 Gaia parallaxes

We validate the purity of our KiDS DR3 QSO catalog by analyzing parallaxes and proper
motions of the contained sources. For this we use the second data release of the Gaia survey
(Gaia Collaboration et al., 2018a), which is currently mapping the entire sky, focusing on
stars in the Milky Way, but detecting also extragalactic objects like quasars (Gaia Collabora-
tion et al., 2016). In Gaia DR2, over 1.3 billion Gaia-detected sources in the magnitude range
3 < G < 21 have measurements of parallaxes and proper motions, therefore, a cross-match
with that dataset can be used to test statistically if our QSO candidates are indeed extragalac-
tic. In particular, the QSO candidates are expected to have negligible parallaxes and proper
motions in the absence of systematics.

As Gaia is significantly shallower than KiDS (G < 21 corresponds to r ≲ 20), practically
all of the sources from Gaia over the common sky area have a counterpart in KiDS. The re-
verse of course does not hold, especially since Gaia does not store measurements of extended
sources, and in particular only 32% of our inference sample is also matched to Gaia within
1” radius. In addition, due to considerable measurement errors in source motions at the faint
end of Gaia, the test presented here cannot provide an unambiguous star/quasar division for



30 Chapter 3. Quasar catalog in the optical KiDS DR3

Table 3.3: Mean values of parallax (ϖ), right ascension and declination
proper motions (µα∗ and µδ), all in milli-arcsecond units, as derived from
the Gaia high precision sample (see text for details). First three sets of rows
show results for the ground-truth SDSS and KiDS DR3 × SDSS training
objects. Next, acceptable quasar offsets based on model testing results are
presented, while the last two rows show values for the KiDS quasar catalog

and its probability-limited subset.

size ϖ µα∗ µδ

QSO
SDSS 138k -0.02 -0.02 -0.03
train 2.1k -0.01 -0.02 -0.01

star
SDSS 560k 0.71 -1.81 -6.37
train 7.3k 0.57 -6.12 -6.01

galaxy
SDSS 3.8k 0.16 -0.70 -2.50
train 78 0.29 -3.60 -2.93

acceptable
SDSS - 0.04 -0.14 -0.50
train - 0.05 -0.50 -0.48

QSO
KiDS 7.1k 0.21 -0.27 -1.08

p > 0.8 5.8k 0.09 0.14 -0.42

our full inference sample. Moreover, as discussed in detail by Lindegren et al., 2018, the
measurements of motions in Gaia DR2 have some non-negligible systematics. In particular,
even stationary quasars have appreciable scatter in their measured parallaxes and proper mo-
tions. A special procedure is therefore needed to validate the contents of our quasar catalog
using Gaia, as described below.

In order to analyze the systematics in Gaia DR2 parallaxes and proper motions, Linde-
gren et al., 2018 used a sample of quasars, which define a celestial reference frame, known
as Gaia-CRF2 (Gaia Collaboration et al., 2018b), nominally aligned with the extragalactic
International Celestial Reference System and non-rotating with respect to a distant universe.
This allowed them to design a set of criteria applied to Gaia measurements to make sure that
the selected sources are indeed stationary. As a result, Lindegren et al., 2018 determined a
global mean offset in Gaia parallaxes of −0.029 mas. Detecting appreciably higher offsets
in the parallax distribution for sources assumed to be quasars would then point to stellar
contamination.

A cross-match of our inference catalog with Gaia DR2 gave almost 1.1 million common
objects. Among these, 1 million were classified by the model as stars, 40k as galaxies, and
38k as quasars. As our goal is to evaluate the stellar contamination of the quasar catalog,
we cannot directly apply the criteria of Gaia data cleaning from Lindegren et al., 2018, as
the aim there was to reduce this contamination in a QSO sample. Instead, we define a Gaia
high precision sample, by taking sources with parallax and proper motion errors smaller than
1 mas, and compare the measurements for the KiDS sources to those obtained in the same
way from the SDSS and KiDS×SDSS training sample (where for the SDSS case we used the
full DR14 spectroscopic dataset cross-matched with Gaia DR2). This reduces the number of
quasars found in both KiDS and Gaia from 38k to 7.1k.

In order to properly measure the purity of quasar candidates, we have to take into consid-
eration the test results (Section 3.3), according to which our QSO candidate catalog consists
of 91% quasars, 7% stars and 2% galaxies. Therefore, we calculate “acceptable” parallax
and proper motion offsets by taking a weighted mean of the respective astrometric quanti-
ties with weights of 0.91, 0.07 and 0.02 for ground truth quasars, stars and galaxies. Table
3.3 shows parallax and proper motion mean values for ground truth SDSS and training ob-
jects, together with the acceptable offsets and values derived for the KiDS quasar candidates.
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Figure 3.4: Mean (left panel) and median (right panel) of parallax (solid
purple), right ascension (dashed orange) and declination (dash-dotted green)
proper motions, derived from the Gaia high precision sample for the KiDS
DR3 quasar candidates, as a function of minimum quasar probability limit.

The acceptable offset for parallax (ϖ) is about 0.05 mas for both the full SDSS and training
QSO samples, and ∼ −0.50 mas for the proper motion in declination (µδ). The right ascen-
sion proper motion (µα∗) shows inconsistent results between the full SDSS QSO and training
datasets. In addition, it varies much more than ϖ and µδ, and its mean even changes sign
depending on the QSO threshold probability, as shown below in Fig. 3.4.

The full catalog of KiDS quasar candidates matched with Gaia shows mean offsets sig-
nificantly higher than the acceptable levels, which must be an imprint of residual stellar and
galaxy contamination. We note however that as we use unclipped means, a fraction of signif-
icant outliers can highly influence the means. Still, those measurements can be used to purify
the catalog by limiting the quasars to higher probability values according to our classifica-
tion model. This makes sense from an ML point of view, as our model was optimized for
the training dataset whose properties may differ from the final inference sample. Moreover,
we know that some quasars are not easily distinguishable from stars in the optical bands
used here, and the two-classes may occasionally overlap in terms of their positions in the
feature space (Fig. 2.3). Such objects may have lower classification probability as they are
surrounded by sources from an opposite class. This fact can be used to reduce the problem
of stellar contamination by simply applying a limit on quasar probability. As shown in Table
3.3, at pQSO > 0.8 we obtain an acceptable offset for the mean value of µδ, and close to
acceptable for ϖ. The absolute value of µα∗ is also at an acceptable level for this probability
limit, and in fact its mean oscillates around 0 for pQSO ≳ 0.7 (Fig. 3.4).

Figure 3.4 shows how the mean and median values of parallax and proper motions change
as we increase the QSO probability limit. Mean values converge to 0 mas, while median val-
ues at this level of precision are required to stay within the QSO mean offsets shown in the
first row of Table 3.3. Both mean and median values of the astrometric measurements de-
crease (in terms of their absolute values) for pQSO > 0.5. For higher QSO probability levels
of 0.7 – 0.8 they are sufficiently close to the acceptable offsets for mean measurements, or
0 mas in case of median values, that at these pQSO the quasar candidates can be considered
reliable. An exception is the parallax, whose median changes sign at pQSO ∼ 0.5 and contin-
ues decreasing to almost −0.02 mas at pQSO ∼ 1. This is however expected from the offset
calculated by Lindegren et al., 2018 which equals −0.029 mas for parallax measurements.

We consider these results a considerable success of our model, especially since this anal-
ysis of the KiDS DR3 objects which are also present in Gaia focuses on the star/quasar
separation, which is the most difficult task to solve. Moreover, Gaia measurements may be
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Figure 3.5: Number counts of SDSS quasars and KiDS quasars classified
in this work. Together with the full QSO candidate sample, we also show
samples limited to quasar probabilities above 0.7 and 0.8, which are the cuts

we suggest applying to improve the purity of the sample.

strongly contaminated with large positive or negative values, resulting from an inconsistent
matching of the observations to different physical sources. This may especially affect quasar
measurements which require higher resolution than other objects, and therefore can show
larger offsets in our catalog than in the training data. Based on this analysis, we suggest to
limit the catalog to a minimum classification probability of p > 0.8 which favors purity and
gives a sample of ∼75k quasars, or use a cut of p > 0.7 which gives better completeness for
a sample of ∼100k quasars.

3.4.2 Number counts

As another test of completeness, we now compare the number counts of the quasars used for
training and those in our final sample. This is done for the r band on which KiDS detections in
the multiband catalog are based. The SDSS DR14 quasars used here as the training sample
were preselected based on several color cuts and other criteria (e.g., Blanton et al., 2017),
which results in various levels of incompleteness as a function of redshift and magnitude. On
the other hand, a QSO sample selected from imaging data as the one resulting from our work
is expected to provide a much more complete sample, ideally volume-limited. In Fig. 3.5 we
compare N(r) for the input SDSS spectroscopic quasars with results from our classification.
In the latter case, we show number counts for the general QSO candidate sample and for the
cut at pQSO > 0.7 and pQSO > 0.8, determined above as optimal for improving the purity of
this dataset.

The counts shown give the total number of sources per bin for the full respective samples,
that is not normalized by area. Therefore, the comparison has mostly qualitative character. It
serves as a verification that the number counts in our photometrically-selected quasar sample
steadily rise up to the limiting magnitude of the sample, also for the cases of minimum
probability thresholds applied. In other words, the incompleteness visible for the SDSS
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Table 3.4: Contributions of the classes predicted by our model, starting with
the whole inference dataset and then moving to its cross-matches with exter-
nal quasar catalogs: one spectroscopic (2QZ), providing ground truth, and
3 photometric, which are probabilistic. In those cross-matches, the highest

quasar contribution is expected.

size star quasar galaxy
KiDS DR3 inference dataset 3.4M 35% 6% 59%
× 2QZ 5.4k 2% 97% 1%
× R09 17k 9% 86% 5%
× R15 18k 6% 91% 3%
× DP15 43k 15% 74% 11%

training sample at the faint end is not propagated to the final selection of the KiDS DR3
QSOs.

3.4.3 External quasar catalogs

Another method of examining the properties of our quasar catalog is by matching it with
other QSO datasets overlapping with KiDS DR3. We use four external samples for this
purpose: the spectroscopic 2dF QSO Redshift Survey (Croom et al., 2004, hereafter 2QZ),
and three photometric samples (Richards et al., 2009a; Richards et al., 2015; DiPompeo et
al., 2015, hereafter R09, R15 and DP15 respectively). 2QZ includes confirmed quasars, stars
and galaxies, while the photometric catalogs are probabilistic, based on selection from SDSS
(R09) and SDSS+WISE (R15 & DP15). In addition, only 2QZ significantly overlaps with
the KiDS footprint, while the others (R09, R15 and DP15) cover the SDSS area1. They also
have different depths, as illustrated in Fig. 3.6 which shows r-band distributions of cross-
matches between the full KiDS DR3 and the four discussed catalogs. Among these, 2QZ is
considerably shallower (r < 21) than our inference dataset, which is the main reason why we
have not included it in our training set. As a result, the number of cross-matches between our
inference catalog and the external datasets is not expected to be very large. Indeed, taking
from the comparison catalogs sources which are labeled as quasars, we find respectively 5.4k
objects of our inference sample in 2QZ, 17k in R09, 18k in R15 and 43k in DP15. Of these,
respectively 5.2k (97%), 14.6k (86%), 16.4k (91%) and 31.8k (74%) have quasar labels in
our catalog (see Table 3.4). A relatively lower consistency between our QSOs and DP15
might be related to the fact that in the DP15 some quasar candidates have probabilities as
low as pQSO > 0.2. It should be stressed that the probabilistic character of the R09, R15
and DP15 datasets means that they can be only used for qualitative rather than quantitative
comparisons. Unlike the spectroscopic 2QZ, these 3 photometric QSO datasets cannot be
treated as ground truth and we will use them mainly to test the consistency between our
model and the external approaches, and to further validate the minimum QSO probability at
which our quasar catalog is robust.

The availability of three-class spectroscopic labels in 2QZ allows us to calculate the same
metrics as for the SDSS test sample discussed in Section 3.3. The cross-match with KiDS
reduces 2QZ to 7.8k objects which, in terms of spectroscopic 2QZ labels, consists of 5.4k
QSOs, 2.4k stars and only 15 galaxies. We obtain high metric values in this case: three-
class accuracy of 95%, QSO purity of 95% and completeness of 97%. This is summarized
in Table 3.5, and Fig. 3.7 which shows the relevant confusion matrix. These results give an
independent confirmation of the very good performance of our QSO classification also at the

1Another QSO sample that could be used is 2SLAQ (Croom et al., 2009) but it has much less overlap with
KiDS DR3 than those considered here.
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Figure 3.6: Normalized distributions of the r-band magnitude for cross-
matches between the KiDS DR3 and four overlapping quasar catalogs, as

indicated in the legend.

Table 3.5: Evaluation metrics for KiDS DR3 quasar classification, calculated
from the 2QZ test set.

classification type metric score
three-class accuracy 94.5%

QSO vs. rest

accuracy 94.9%
ROC AUC 96.4%

purity 95.3%
completeness 97.4%

F1 96.3%

bright end, here evaluated on a truly “blind” test set which was not part of the general training
data. In particular, that comparison sample had been preselected from different input imaging
and according to different criteria than SDSS, although we note that some 2QZ quasars are
now included in the SDSS database.

As already mentioned, the remaining QSO catalogs used here for validation are proba-
bilistic, therefore matching with them leads to more qualitative than quantitative evaluation.
Still, we observe good consistency between our detections and those external models, espe-
cially for the R09 and R15 cases. Together with 2QZ, we use the overlapping QSO samples
to further improve the purity of our quasar catalog. For this, we employ the probabilities
delivered by the RF model, as was already discussed in Section 3.4.1. Except for the 2QZ
case, this serves mostly to improve the consistency between our model and those external
methods. Fig. 3.8 shows how the consistency between the models rises as we increase the
minimum probability at which we accept the KiDS QSO classification. For 2QZ, we see
excellent consistency for all the probability values and almost perfect (i.e., KiDS QSO con-
tribution ∼ 100%) for pQSO > 0.8. For the probabilistic catalogs, we observe that many
external quasars are classified by our method with pQSO > 0.8, which we deduce from the
increase in consistency above this value. Those results fully agree with the conclusion from
Section 3.4.1 which states that it is a good option to limit our identifications to pQSO > 0.8
when optimizing the purity of the quasar catalog.
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Figure 3.7: Confusion matrix of the KiDS DR3 classification calculated for
the overlapping 2QZ sources.

Figure 3.8: Proportion of KiDS DR3 QSOs in cross-matches with external
quasar samples as a function of KiDS minimal classification probability. See

text for details of the datasets.
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3.4.4 WISE photometric data

We also validate our KiDS QSO catalog using mid-IR data from the full-sky Wide-field
Infrared Survey Explorer (WISE, Wright et al., 2010). Despite being relatively shallow (∼ 17
mag (Vega) in the 3.4 µm channel), WISE is very efficient in detecting quasars at various
redshifts. In particular, QSOs in WISE stand out as having very “red” mid-IR W1 −W2
([3.4µm] − [4.6µm]) color (e.g., Wright et al., 2010; Jarrett et al., 2011; Jarrett et al., 2017).
The general rule-of-thumb for QSO selection in WISE is W1−W2 > 0.8 (Stern et al., 2012),
but more refined criteria are needed to obtain pure and complete quasar samples from WISE
(e.g., Assef et al., 2013; Assef et al., 2018). In particular, a non-negligible number of optically
selected QSOs have W1−W2 significantly lower than the 0.8 limit (e.g., Kurcz et al., 2016).
That being said, QSOs are generally well separated from galaxies and stars in the W1 −W2
color with some minimal overlap for W1 −W2 < 0.5.

Although there exist QSO or AGN catalogs selected from WISE only (Secrest et al.,
2015; Assef et al., 2018), here we use the entire AllWISE data release (Cutri and al., 2013)
for the cross-match, as our goal is to derive the mid-IR W1 −W2 color of all the KiDS
quasar candidates. We have cross-matched both our training set and the output catalog with
AllWISE using a 2” matching radius (a compromise between KiDS sub-arcsecond resolution
and the ∼ 6” PSF of WISE). We first note that ∼ 81% of our training set have counterparts
in AllWISE, while for the inference sample this percentage is lower, ∼ 45%, mostly due to
WISE being considerably shallower than KiDS in general. We also confirm the observation
from Kurcz et al., 2016 that a large fraction of SDSS-selected quasars have W1 −W2 < 0.8
(∼ 22% in the cross-match of our training set quasars with WISE detections).

For the output catalog, the distribution of the W1 −W2 color for QSO candidates in the
matched sample is in good agreement with that of the training set, with a slight preference to
“bluer” colors which might actually reflect true properties of these optically-selected quasars
rather than problems with our algorithm. Interestingly, this distribution shifts towards redder
values of W1 −W2 when cuts on higher pQSO are applied. This is illustrated in Fig. 3.9,
which shows that for pQSO > 0.9, the distribution of W1−W2 for the KiDS QSO candidates
is very similar to that of the SDSS spectroscopic quasars matched to WISE. This is remark-
able given that nowhere in our classification procedure any mid-IR information was used,
which additionally confirms the purity of KiDS quasar catalog.

3.5 Summary

In this Chapter, we present a catalog of quasars selected from broad-band photometric ugri
data of the KiDS DR3. The QSOs are identified by the RF supervised machine learning
model, trained on SDSS DR14 spectroscopic data. We first cleaned the input KiDS data of
entries with excessively noisy, missing or otherwise problematic measurements. Applying
a feature importance analysis, we then tune the algorithm and identify in the KiDS multi-
band catalog the 17 most useful features for the classification, namely magnitudes, colors,
magnitude ratios, and the stellarity index. We used the t-SNE algorithm to map the multi-
dimensional photometric data onto 2D planes and compare the coverage of the training and
inference sets. We limited the inference set to r < 22 to avoid extrapolation beyond the fea-
ture space covered by training, as the SDSS spectroscopic sample is considerably shallower
than KiDS. This gives 3.4 million objects in the final inference sample, from which the ran-
dom forest identified 190,000 quasar candidates. Accuracy of 97% (percentage of correctly
classified objects), purity of 91% (percentage of true quasars within the objects classified as
such), and completeness of 87% (detection ratio of all true quasars), as derived from a test set
extracted from SDSS and not used in the training, are confirmed by comparison with exter-
nal spectroscopic and photometric QSO catalogs overlapping with the KiDS footprint. The
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Figure 3.9: Distribution of the mid-infrared W1 −W2 color (3.4 µm - 4.6
µm, Vega) of quasar candidates in our KiDS sample, derived from a cross-
match with all-sky WISE data. We show histograms for all KiDS QSOs
matched with WISE, as well as for two examples of the probability cut:
pQSO > 0.7, which is recommended to increase the purity of the sample,
and pQSO > 0.9 to illustrate how the resulting W1 −W2 changes when the

minimum probability considerably increases.

robustness of our results is strengthened by number counts of the quasar candidates in the r
band, as well as by their mid-infrared colors available from the Wide-field Infrared Survey
Explorer (WISE). An analysis of parallaxes and proper motions of our QSO candidates found
also in Gaia DR2 suggests that a probability cut of pQSO > 0.8 is optimal for purity, whereas
pQSO > 0.7 is preferable for better completeness. This study presents the first comprehensive
quasar selection from deep high-quality KiDS data and will serve as the basis for versatile
studies of the QSO population detected by this survey.
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4
Quasar catalog in the optical and
near-IR KiDS DR4

This chapter is based on the publication Nakoneczny et al., 2021, and all the results were
obtained by the thesis author, unless stated otherwise. In this chapter, we show the results
of classification, photometric redshift estimation, and the properties of the quasar catalog
from the KiDS DR4 data described in §2.1.3, using methodology outlined in §2.2 and §2.4.
The chapter is organized as follows. §4.1 compares the results of evaluation using the faint
extrapolation test, §4.2 shows the feature selection results, §4.3 describes the model selection
results, §4.4 gives the classification and photo-z results on the internal tests, and, finally, §4.5
evaluates the final catalog using external testing methods and provides its properties. The
quality of the catalog allows for its applications in cosmology and quasar clustering analysis,
which we perform in the next Chapter.

4.1 Training histories

We use methodology from §2.4.2 to compare different evaluation strategies. Figure 4.1 com-
pares XGB training histories (number of trees used) for random and extrapolation tests. The
random test is a good tracer of model quality for a broader range of magnitudes, and the faint
extrapolation test is more sensitive to overfitting. During the model training, both testing
methods should be taken into consideration. In the case of the classification, which achieves
high accuracy, the faint extrapolation test can be given more importance. For redshifts, which
are more difficult to fit at the faint data end, the extrapolation test might not show the full
learning process, as illustrated by early minimums in QSO and galaxy redshift performance.
When training the final inference models, we have to use the full magnitude ranges for train-
ing, so the extrapolation test is not available at that point, and we stop the model training
based only on the results from the random test. Therefore, the best optimization approach
during the experiments is to aim not only for the lowest error in a random test, but also for
the lowest error in the extrapolation in the moment when the random error achieves its global
minimum. This way, we can make sure that the final inference models, whose training is
stopped based only on the random test, will also achieve good results at the faint data end.

4.2 Feature selection

We use methodology from §2.2.2 to perform feature selection. The final set of features
consists of 83 values: optical ugri and near-IR ZY JHKs magnitudes, differences (colors) and
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Figure 4.1: Learning histories for the XGB models. Left: Classification.
Center: QSO redshift. Right: Galaxy redshift. The x-axis shows the number
of trees created iteratively during the model training, and the y-axis shows
the classification error rate and redshift root mean square error on two differ-
ent scales for the random and faint extrapolation tests. We obtain the galaxy
redshifts through the same pipeline as for the quasars. The errors in the faint
test are higher than in the random tests due to extrapolation and higher noise.
The models were stopped if the results on the faint test did not improve for
200 consecutive trees. For classification, which is easier to solve than red-
shift regression, the random test shows minimums sooner, followed by os-
cillations, while the faint test suggests longer training. For redshifts, which
is a more complicated problem, the faint test achieves minimum quickly and

then shows overfitting, while the random test suggests longer training.
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Figure 4.2: Feature rankings from the XGB models. Left: Classification.
Center: QSO redshift. Right: galaxy redshift. We used the total gain across
all splits in which the feature is used. The classification is mostly based on
the stellarity index, near-IR JKs, and optical ur bands. The QSO redshifts
use all the NIR bands and most of the optical ones, but also the morphologi-
cal parameters. The galaxy redshifts are based practically only on the optical
gri magnitudes. Colors and ratios of the same magnitude pairs have a differ-

ent importance.

ratios of every pair of magnitudes, and two morphological classifiers: the stellarity index
from SExtractor and the third bit of SG2DPHOT from KiDS. We tested other bits of the
SG2DPHOT without an observable improvement in the results. Ellipticity and other apertures
were tested in the previous chapter and no significant increase in performance was seen.

Figure 4.2 shows the most important features for the classification and redshift estima-
tion. We observe the importance of near-IR imaging, which is less affected by dust than
the optical bands. The classification is mostly based on colors and magnitude ratios, but
the redshift models also use the magnitude values, which is expected due to correlation be-
tween apparent magnitude and redshift. Quasar redshifts require more features than galaxy
photo-zs, which confirms that they are more challenging to estimate. The most important
magnitudes for QSO redshifts, the near-IR ZKs, are the two extreme bands in this range. We
observe only one feature of relatively low importance, which mixes the optical and near-IR,
the r − Z color. The stellarity indices were also used for QSO redshift, allowing models to
distinguish extended low-redshift AGNs.

Feature importance suggests using ratios of magnitudes, however, the importance is based
only on the training set and might fail in showing the effects of overfitting. Table 4.1 com-
pares the full set of 83 features, with a limited set of 47 features excluding the magnitude
ratios. We fine-tuned the models to the full set of 83 features as suggested by the feature
importance, but we note that this approach might underestimate the performance of the no-
ratio feature set. We observe that the differences between the two feature sets are significant
for a faint extrapolation test of photometric redshifts. The ANN trained on the full set of
features achieves the best results overall. Due to underestimated performance of the no-ratio
feature sets, two scenarios are still possible: the magnitude ratios provide better results on
both tests, or lead to overfitting in which case the random test results might be better, but the
faint extrapolation results would be worse. It is very important that, to be able to properly
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Table 4.1: Comparison of two feature sets: all 83 features and a limited set
of 47 features excluding magnitude ratios, reported on the random (r < 21.3)
and faint extrapolation (r ∈ (21.3, 22)) tests. The redshifts were tested in two
subsets of QSOs: true spectroscopic ones and photometric candidates. The
candidates include misclassified sources, e.g., a true star assigned a QSO
class and redshift. We mark with bold font the best results, independently
for random and faint extrapolation tests. The asterisk (*) marks the approach
used to create the final catalog. Recall is the same as completeness, and

MSE, R2, and δz are given by equations 2.1, 2.2, and 2.3, respectively.

classification redshift for true QSOs redshift for QSO candidates
test model features accuracy purity recall MSE R2 δz MSE R2 δz

random RF all features 99.01% 97.39% 94.43% 0.12 85% 0.02 ± 0.14 0.12 84% 0.03 ± 0.21
no ratios 98.98% 97.20% 94.57% 0.11 86% 0.02 ± 0.14 0.14 82% 0.04 ± 0.25

XGB all features 99.09% 97.80% 95.82% 0.13 84% 0.02 ± 0.15 0.13 83% 0.03 ± 0.21
no ratios 99.07% 97.80% 94.66% 0.12 84% 0.01 ± 0.15 0.12 83% 0.03 ± 0.20

ANN* all features* 98.98% 96.90% 94.72% 0.09 88% 0.01 ± 0.12 0.11 85% 0.02 ± 0.23
no ratios 98.99% 97.58% 94.30% 0.09 88% 0.01 ± 0.12 0.11 86% 0.02 ± 0.21

faint RF all features 97.41% 96.07% 92.30% 0.31 31% 0.02 ± 0.25 0.33 31% 0.05 ± 0.38
extrap. no ratios 97.39% 96.12% 92.22% 0.29 35% 0.01 ± 0.24 0.31 35% 0.04 ± 0.38

XGB all features 97.41% 96.44% 92.07% 0.27 39% 0.04 ± 0.23 0.34 29% 0.08 ± 0.41
no ratios 97.45% 96.55% 91.94% 0.27 39% 0.04 ± 0.22 0.33 29% 0.08 ± 0.40

ANN* all features* 97.24% 96.54% 90.82% 0.22 51% 0.00 ± 0.19 0.28 38% 0.04 ± 0.37
no ratios 97.26% 96.94% 90.88% 0.24 46% 0.00 ± 0.20 0.30 32% 0.03 ± 0.38

assess the possibility of overfitting while using the ratios, the faint extrapolation test is nec-
essary, as the random test already fails to show differences between the two feature sets. In
this work, we decided to use the full set of 83 features, suggested by the feature importance.
The approach we chose may not be optimal, as more experiments with feature and model
engineering are possible. However, as the results we achieved are already very good, more
extensive experiments are beyond the scope of this work.

Additionally, we experimented with reducing the feature set by removing, not whole
groups of features (magnitudes, colors, or ratios), but single and least important features used
for classification to minimize possible overfitting and increase model interpretability. This
provided stable results for classification, but worsened the redshift estimates in the subset
of QSO candidates due to lower consistency between the classification and redshift models.
The inconsistency between the models results in more objects with either one of the classes
or a redshift assigned incorrectly, while the redshifts of the QSO candidates require both the
class and the redshift to be assigned correctly.

4.3 Model selection

We use methodology from §2.2.1 to perform model selection. Machine learning models can
be modified in many ways which control the bias versus variance trade-off, in addition to the
number of trees investigated in Fig. 4.1. In the case of ANNs, we tuned the number and size
of layers, regularization, dropout, and learning rate. Some attempts at model optimization
showed improvement in the results for both the tests, while the increased regularization usu-
ally led to better results only in the faint extrapolation case. For instance, once we reached
the optimal network size for classification, using more layers or nodes per layer did not show
any change in the random test, but led to deterioration in the faint extrapolation. Using only
the randomly chosen subset may lead to a different set of parameters than when an extrapo-
lation subset is also incorporated, and uncontrolled failure of estimation for the faint end. In
case of incorrectly regularized models, such a failure can happen not only in extrapolation
data, but also for the faintest magnitudes covered by the spectroscopic training data (r ∼ 22
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in our case). Thanks to both tests, we have the full picture of the bias versus variance trade-
off and we can tune the models so that they perform well on both bright and faint data, and
extrapolate to magnitudes fainter than available from the spectroscopy. We consider this an
important success of our approach.

We tested several ML strategies, and we conclude that two ANNs, one for classification
and one for QSO redshifts, provide the best results overall1. We find that a neural network
model with multiple outputs for classification and redshifts, which would allow us to solve
both problems at once, can be tuned to provide some improvement either for detection or
redshift over two separate networks, but we did not manage to tune the network to simultane-
ously achieve the best results for both problems. It is due to both problems requiring different
parameters. The specialized redshift models, trained either on galaxies or QSOs, are neces-
sary for the best results, due to the differences between the two classes in the optimal model
parameters, such as ANN size or regularization.

Table 4.1 shows the results of the specialized redshift models. The redshift metrics (Sec-
tion 2.4.2) were calculated on two subsets of QSOs: true spectroscopic ones and our QSO
candidates from photometric classification, as explained in Section 2.4.2. In our previous
approach to KIDS DR3, which dealt with classification only, we did not observe a significant
difference between RF and XGB performance. In this work, we find distinct results between
all the tested models, due to a more complex validation method and larger feature space, now
extended by near-IR bands. In the random test, XGB performs best in classification, and
ANN performs best in redshifts. The faint extrapolation test shows less agreement on which
model is the best for classification, but the superiority of ANN for redshifts is more promi-
nent. We find that XGBoost is the most robust and straightforward model for classification,
while ANN is the best for a combined classification and redshift.

A mixed approach, where classification is performed with XGB and redshifts with ANN
gives the best results on the random test, but worse results for QSO candidates in the faint
test, due to different characteristics of both models resulting in fewer objects with both class
and redshift assigned correctly. In the case of the faint extrapolation test and the subset of
QSO candidates, the R2 deteriorates by 3 percentage points, while the standard deviation of
δz is higher by 0.03.

Artificial neural networks provide good extrapolation results for both classification and
redshifts. The classification deteriorates by 3 percentage points in the faint extrapolation test,
while the standard deviation of δz is higher by 0.07 than in the random test.

4.4 Classification and photo-z results

We use methodology from §2.4.2 to evaluate the performance of classification and photo-z
estimation. Quasar misclassification occurs mostly at low redshift (Fig. 4.3), with AGNs
which have extended hosts and are generally labeled as QSO by SDSS. This affects the com-
pleteness more than purity, as in broad-band optical and NIR photometry those AGNs are
more similar to galaxies than to quasars. It is due to the spectra taken through fibers in the
SDSS, and in case of galaxies with AGN, the fiber is centered on the nucleus. This allows
resolved galaxies to be matched with a QSO template by SDSS, and be spectroscopically
classified as quasars. The KiDS photometry, however, picks up the host galaxy light and
does not allow one to see the emission lines, therefore such AGNs are classified as galaxies
from imaging. We define quasars as all the objects labeled as QSO by the SDSS, and this
misclassification is a consequence of a mismatch in the QSO definitions between the spec-
troscopic and imaging surveys. Quasars at low redshifts with a low value of the stellarity

1The final model parameters and ANN architecture can be found in the script models.py in the github reposi-
tory https://github.com/snakoneczny/kids-quasars.

https://github.com/snakoneczny/kids-quasars
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Figure 4.3: QSO misclassification as a function of redshift. Top: Using op-
tical KiDS and near-IR VIKING features. Bottom: Using only optical KiDS
features. Left: Spectroscopic QSOs and redshifts – a test for completeness.

Right: QSO candidates and redshifts – a test for purity.



4.4. Classification and photo-z results 45

Figure 4.4: Comparison of the spectroscopic and photometric redshifts for
SDSS test-set quasars. Left: Random test (r < 21.3). Right: Faint extrap-
olation (21.3 < r < 22). The mean photo-z error for the random and faint
test equals 0.009± 0.12 and −0.0004± 0.19, respectively. Every redshift es-
timate is a Gaussian probability density function, the standard deviation of

which represents the uncertainty (color coded).

index may additionally look more similar to extended galaxies for ML models. The quasar
candidates consist of 96.9% true quasars, 2.6% galaxies, and 0.4% stars. The bottom plots
of Fig. 4.3 show results obtained using only the optical ugri broad-bands (analogous to the
Fig. 3.3). We observe misclassification with stars at the QSO redshift of 2 < z < 3 (bottom
left), and worse redshift estimates (bottom right), when only KiDS optical imaging is used,
as studied in the previous approach.

Figure 4.4 compares spectroscopic and photometric redshifts on the random and faint
tests. The random test shows a well-fitted distribution and thus the modeled uncertainty
increases for objects further from the diagonal. We observe some clustering of redshifts
around several values in the random test, but we did not manage to establish whether it is
due to the ML model or internal data characteristics. The outliers behave similarly also in
spectroscopic measurements due to confusion between pairs of emission lines (e.g., Croom
et al., 2009, Fig. 10). The faint extrapolation test shows more scatter and more outliers. The
aleatoric uncertainty, which we model with a Gaussian output layer, is related to the fact that
objects which appear similar in photometry may have different redshifts. This model does
not include the situation in which part of the feature space is not covered by data, and we
would expect higher uncertainty for such estimations – this case would relate to epistemic
uncertainties. After several iterations of tuning the model with random and faint extrapolation
tests, we managed to achieve useful uncertainties also for the faint extrapolation test, not
covered by the training data.

As already mentioned, KiDS provides photometric redshifts for all cataloged galaxies,
including quasars, and they are stored in the Z_B column (Kuijken et al., 2019). As these
photo-z estimates were optimized for galaxies used for weak lensing studies, they are not
expected to perform well for quasars in general. For comparison with our results, the mean
error of the bpz estimates for the QSOs in the random test is δz = −0.38 ± 0.43, while in
the extrapolation2, δz = −0.45 ± 0.32. The bpz redshifts for QSOs are significantly under-
estimated and much less precise than our estimates: Their scatter is 3.5 times higher in the
random test, and 1.7 times higher in the faint extrapolation test, in comparison to our results.

2We note that as bpz is a template-fitting approach, its photo-z derivations are independent of the properties
of training sets.
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Table 4.2: ANN results on MASK flagged objects in the random (r < 21.3)
and faint extrapolation (21.3 < r < 22) tests. Brackets show differences to

corresponding ANN results from Table 4.1.

test purity recall δz for true QSOs δz for QSO candidates
random 96.41% (-0.49%) 93.98% (-0.74%) 0.004 (-0.005) ± 0.13 (+0.01) 0.019 (+0.000) ± 0.25 (+0.06)

faint extrap. 94.36% (-2.18%) 88.28% (-2.55%) 0.01 (+0.01) ± 0.22 (+0.03) 0.07 (+0.03) ± 0.41 (+0.04)

Figure 4.5: QSO photometric redshift errors as a function of thresholds in
QSO probability (left panel) and model photo-z uncertainty (right panel).
An increasing minimum classification probability yields better redshift esti-
mations at a small cost in completeness. Low uncertainty estimations further

increase redshift reliability at a cost of removing more objects.

The KiDS DR4 catalog provides a MASK flag indicating possible flux contamination
from issues such as star halo, globular clusters, ISS, etc. We observe stability of the estima-
tions in a random test on objects with such contamination. To verify this, we evaluated ANNs
on the objects flagged with any MASK bit (Table 4.2). The results are stable in the random
test and show some deterioration in the extrapolation test. We always include all masked
objects in the training, so the models can learn how to process them, and the associated
additional noise helps in regularization.

Classification and redshift results can be improved by limiting the sample to objects with
higher classification probabilities or lower redshift uncertainties (Fig. 4.5). Similarly to our
approach for KiDS DR3 described in the previous chapter, we consider the classification
probability limits as the primary way to calibrate the catalog’s purity-completeness trade-off,
while the uncertainties can be used to achieve the necessary redshift precision.

4.5 Catalog properties

4.5.1 Number counts

In this Section we present and discuss the final quasar selection results in KiDS DR4. We ap-
plied the trained ML models to 45M objects of the KiDS DR4 inference data, and we found
a total of 3M QSO candidates, excluding the unsafe inference subset. In the final model
training, we used the whole range of magnitudes of the training set, as well as a randomly
selected validation sample. We employed the same set of values of hyper-parameters as de-
termined in the experiments which included the faint extrapolation test, and we only picked a
new number of epochs based on new learning histories with a randomly selected test sample.
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Figure 4.6: QSO number counts of SDSS spectroscopic QSOs and KiDS
DR4 QSO candidates (QSOcand) at progressing classification probability
cuts, excluding the unsafe inference subset. The dashed lines show eBOSS
predictions fitted with a broken power law. The SDSS spectroscopic QSOs
are complete to r < 19. KiDS QSO candidates without a probability cut
are too numerous at r > 21.5 due to misclassification, and they follow stan-
dard Euclidean number counts. A cut at p(QSOcand) > 0.9 gives a complete
catalog in the safe subset (r < 22). A cut at p(QSOcand) > 0.98 provides

expected number counts up to r ≲ 24.
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Figure 4.7: Spatial number densities, excluding the unsafe inference sub-
set, for KiDS DR4 QSO candidates. Two bottom lines compare the KiDS
QSO candidates to the SDSS spectroscopic QSOs at the SDSS completeness
range of 16 < r < 19. The three upper lines show the final QSO catalog at
progressing magnitude limits with the suggested probability cuts. We chose
a magnitude limit for the middle line at r < 23.5, as above this limit the

distribution of QSO candidates gains another peak at redshift z < 1.5.

In Figure 4.6 we compare the number counts of QSO candidates (QSOcand) in the safe
and extrapolation subsets to the predictions from the eBOSS survey (table 7 from Palanque-
Delabrouille et al., 2016). We fit the eBOSS predictions with a broken power law. Our
analysis suggests that two cuts on the photometric QSO probability match the expected num-
bers: p(QSOcand) > 0.9 for the safe magnitude range (r < 22) and p(QSOcand) > 0.98 for
the extrapolation. The fit of the QSO number counts to eBOSS predictions is reliable for
r < 23.5, where the extrapolation subset is complete (Fig. 2.6). We do not observe the ex-
pected decrease in the QSO number counts at r > 23.5, which should result from reaching
the completeness limit of the extrapolation subset. This suggests increased impurity of the
QSO candidates in that range. The possible unreliability of the classification at r > 23.5 was
already suggested by the t-SNE visualization in Fig. 2.5.

4.5.2 Spatial density

Figure 4.7 shows spatial number densities for KiDS QSO candidates based on the photo-
metric redshifts and for SDSS spectroscopic QSOs based on the spectroscopic redshifts. We
accounted for the Vmax correction, taking the KiDS magnitude limit r = 25 and assuming
the WMAP9 (Hinshaw et al., 2013) cosmology. The distribution is expected to peak at z ∼ 2
- 3 and then follow an exponential decrease (Fan, 2006). Based on the SDSS spectroscopic
QSO number counts (Fig. 4.6), we estimated its completeness to be r < 19. We observe some
differences between KiDS photometric and SDSS spectroscopic QSO densities at this limit.
The QSOs missing at low redshifts are due to the previously discussed misclassification with
galaxies (Fig. 4.3). At the faintest end (r > 23.5), on the other hand, the photo-z-based den-
sity displays an additional peak at z < 1 for the suggested p(QSOcand) > 0.98. This is due to
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Table 4.3: Number of photometrically selected QSOs in our catalog at pro-
gressing magnitudes with the suggested probability cuts (bold), excluding
the unsafe inference subset. At fainter magnitudes, a higher probability
threshold is required for robustness. The cuts give smaller subsets of QSO

candidates and increase the purity.

safe r < 22 safe & extrap. r < 23.5 safe & extrap. r < 25
QSOcand 266k (100%) 1.6M (100%) 3M (100%)

p(QSOcand) > 0.90 158k (59%) 637k (39%) 1.1M (36%)
p(QSOcand) > 0.98 127k (48%) 311k (19%) 507k (17%)

apparently faint galaxies classified by our model as QSOs and assigned redshifts lower than
one. This conclusion agrees with the number counts indicating a QSO impurity at r > 23.5.

Table 4.3 summarizes the number of QSOs in the final catalog at progressing magnitude
limits – thus reliability limits – and the suggested probability cuts. According to the number
counts and spatial number densities, the QSO classification and redshift estimations should
be reliable up to r < 23.5. At r > 23.5, the classification provides excessive number counts,
and the photometric redshifts suggest misclassification with galaxies. The forthcoming DESI
and planned 4MOST QSO surveys could help verify these finding, as they will include QSOs
fainter than SDSS and will overlap with KiDS.

We visualized the outputs from the ML models, compared it to the spectroscopic informa-
tion, and show the final catalog properties for the inference subsets and suggested probability
cuts using t-SNE in Fig. 4.8. The main spectroscopic QSO group is accurately covered with
photometric classification and redshifts. In the close extrapolation, the predictions appear as
a regular extension of the main QSO group, which qualitatively confirms the success of our
approach. The decision to separate out the unsafe inference subset is confirmed, as we ob-
serve the distributions of all three classes overlapping in the corresponding part of the feature
space. The estimations for fainter magnitudes could be used to look for QSOs at the highest
redshifts or to select candidates for follow-up spectroscopy.

4.5.3 Gaia parallaxes

We cross-matched the QSO candidates identified here with Gaia DR2 (Gaia Collaboration et
al., 2018a) to estimate the star contamination. As described in the previous chapter (§3.4.1), a
clean set of QSOs is expected to have a global mean parallax offset of −0.029 mas (Lindegren
et al., 2018). This value was calculated by removing incorrectly measured high parallaxes for
SDSS QSOs. Following the same procedure for KiDS, QSO candidates would remove the
star contamination, which we want to measure. Instead, we calculated a less precise mean
offset for SDSS QSOs in a high precision sample with parallax and proper motion errors
smaller than 1 mas. This offset equals −0.017 mas, which is smaller in absolute terms than
the official Gaia measurement.

The QSO candidates in the KiDS DR4 safe inference subset show a mean parallax off-
set of 0.003 mas, and this goes down at the progressing minimum classification probability
(Fig. 4.9). This assessment is based on a cross-match between our catalog and the Gaia high
precision sample mentioned above, which yields 1.63M objects: 1.61M (98.7%) classified
photometrically as stars, 20k (1.2%) as QSOs, and 1k (0.1%) as galaxies. The test is lim-
ited to the Gaia magnitude G < 21, which corresponds to r ⪅ 20. We then calculated an
“acceptable offset” from a sample of the three spectroscopic classes, with the size of each
class corresponding to the contamination of QSO candidates with stars and galaxies derived
from the experiments: 96.9% QSOs, 2.6% galaxies, and 0.4% stars (Fig. 4.3). The minimum
QSO photometric probability suggested by this test is p(QSOcand) = 0.9. This cut, which
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Figure 4.8: t-SNE projections. Top: Classification. Bottom: Redshifts. Left:
Raw output from the ML models for all the inference subsets. Center: Spec-
troscopic SDSS distributions. Right: Final QSO catalog at progressing mag-
nitudes with the corresponding probability cuts, excluding the unsafe infer-
ence. The visualizations were made on a subset of 12k objects, thus actual

object density at any part of the feature space is 3.8k times higher.
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Figure 4.9: Mean parallax for KiDS DR4 QSO candidates as a function of
minimum classification probability. The Gaia observations have a global
mean offset, which is imprinted in the QSO mean parallax distribution. The
offset for SDSS spectroscopic QSOs equals −0.017 ± 0.001 mas (standard
error on the mean). We calculated the acceptable offset based on star and
galaxy contamination estimated in the experiments. It equals −0.01± 0.0015

mas.

was obtained from the more precise test at r ⪅ 20, agrees with the cut for the safe inference
subset at r < 22 derived from the number counts.

4.5.4 External quasar catalogs

We find good agreement with other QSO catalogs overlapping with the KiDS DR4 footprint
(Fig. 4.10). Additional ground-truth samples, which were not used in the training, provide a
good test of ML estimations. We used the same QSO catalogs as in §3.4.3, built from different
datasets and with different methodologies than ours. 2QZ, being spectroscopic, can be used
as ground truth and confirms high QSO purity and completeness of our sample: 98.2% three
class accuracy, 98.6% QSO purity, and 99.4% QSO completeness. We note, however, that as
2QZ sources are on average brighter than those from the SDSS QSO catalog, these numbers
should not be taken as measurements of the overall performance of our classification.

4.6 Summary

In this Chapter, we presented a more complex approach in comparison to the one employed
for KiDS DR3, in which we add near-infrared imaging, estimate photometric redshifts, and
extrapolate to magnitudes fainter than available in the spectroscopy. We defined inference
subsets from the 45 million objects of the KiDS photometric data limited to 9-band detec-
tions, based on a feature space built from magnitudes and their combinations. We show that
projections of the high-dimensional feature space on two dimensions can be successfully
used, instead of the standard color-color plots, to investigate the photometric estimations,
compare them with spectroscopic data, and efficiently support the process of building a cat-
alog. The model selection and fine-tuning employs two subsets of objects: those randomly
selected and the faintest ones, which allowed us to properly fit the bias versus variance trade-
off. We tested three ML models: random forest (RF), XGBoost (XGB), and artificial neural
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Figure 4.10: Proportion of KiDS DR4 QSO candidates in cross-matches
with other QSO catalogs as a function of KiDS minimum photometric clas-

sification probability.

network (ANN). We find that XGB is the most robust and straightforward model for classi-
fication, while ANN performs the best for combined classification and redshift. The ANN
inference results are tested using number counts, Gaia parallaxes, and other quasar catalogs
that are external to the training set. We found 158k QSO candidates with a minimum clas-
sification probability of p(QSOcand) > 0.9 at r < 22, and a total of 311k QSO candidates
with p(QSOcand) > 0.98 for r < 23.5, that is to say in the extension to the close extrap-
olation data. The far extrapolation at r < 25 provides a total of 507k QSO candidates at
p(QSOcand) > 0.98. The catalog of QSOs is well designed for extrapolation, with the reli-
ability regions derived from visualizations, and probability thresholds calibrated via a series
of tests. Based on the SDSS QSO test sample, the purity of the catalog is 96.9%, and com-
pleteness is 94.7% for r < 22, which is better than in case of KiDS DR3. The extrapolation
by ∼0.7 magnitude lowers the purity by 0.4 percentage points and the completeness by 3.9
percentage points. The average redshift error in terms of (zphoto − zspec)/(1 + zspec) equals
0.009 ± 0.12 for r < 22, with its scatter increasing to −0.0001 ± 0.19 in the extrapolation
(r < 23.5). The catalog can be empoyed for cosmological and clustering analysis, as we do
in the next Chapter.
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5
Quasar correlation functions and bias
constraints

In this chapter, we show the results of the KiDS DR4 quasar catalog (§4.5) auto- and cross-
correlation with CMB lensing, based on the methodology from §2.5. Our goals are to estab-
lish if the catalog of quasars detected with machine learning provides signals of the aforemen-
tioned observables which allows to measure the bias function, and test if fainter magnitudes
accessible in our catalog allow to constrain bias also for the fainter galaxies. We use the
definitions of auto- and cross-correlations as given in §2.5.1, and perform experiments for
quasars as outlined in §2.5.2. The chapter is organized as follows. In §5.1 we chose the
optimal quasar probability cuts for different magnitudes based on the auto-correlation mea-
surement. In §5.2 we constraint the quasar bias based on the auto- and cross-correlations
for different magnitude cuts and the optimal quasar probability cuts. All the results were
obtained by the thesis author, unless stated otherwise.

5.1 Auto-correlation

We use photometric redshifts, as shown in Fig. 5.1, to obtain the theoretical prediction of the
correlation functions. The distributions differ significantly, with the peak at z ∼ 2.2 increasing
with the fainter magnitudes. This is due to fainter magnitudes probing more the main quasar
family located at z > 2. The photo-z distribution is limited at zphoto > 0.5, as our training
sample quasars also had zspec > 0.5. We obtain little unphysical peaks in the distribution (e.g.
z ∼ 1.9) as an artifact from from the neural network processing. It might affect the theoretical
modelling of the auto-correlation, but should not have any vital effect on the modelling of the
cross-correlation power spectrum with CMB lensing, which we use to estimate the bias of the
sample. A more advanced approach might be to use uncertainties in redshift estimation from
neural networks to assign errors to redshift distribution and marginalize over parametrization
to include those uncertainties in the bias estimates, and smooth the redshift distribution.

We use the KiDS DR4 quasar catalog without the objects tagged as unsafe in the infer-
ence. We test a couple of magnitude cuts around the SDSS limit, namely r lower than 21,
22, 23, and 23.5. We pick several probability cuts, in order to optimize the purity vs com-
pleteness trade-off and obtain signals which are not contaminated with stars and provide the
highest detection significance. The cuts at 90% and 98% are suggested by the number counts
and parallax measurements (sec. 4.5), and here we add cuts at 99.8% and 99.9% in order to
further test more aggressive selection which decrease contamination with stars to a possible
minimum. Figure 5.2 shows a histogram of probabilities for the quasar candidates at different
magnitude cuts.
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Figure 5.1: Photometric redshift distribution at different magnitude cuts for
quasar catalog limited at the most aggressive cut as suggested by the number

counts, the p(QSOcand) > 0.98.

Figure 5.2: Histograms of quasar probability at the magnitude cuts of inter-
est. The lines show the cuts at 99.8% and 99.9%.
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Figure 5.3: The comparison of probability cuts for different magnitude lim-
its. We show here the range of the multipoles lower than 800 to highlight
the differences at the scales between 100 < l < 400. Figure 5.7 shows the

auto-correlation at the higher, l < 1500, multipole range.
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Figure 5.4: Comparison of the auto-correlation for different magnitude cuts.
For each magnitude cut corresponds a different optimal quasar probability

cut, as given in the table 5.1.

We chose the best probability cuts for each magnitude based on the auto-correlation
power spectrum. Stars do not correlate with quasars, but their own power spectrum has
different amplitude and shape than the Cqq and will contaminate the signal. Choosing higher
probability cuts allows to remove stars from the catalog and clean the auto-correlation signal.
If the removed objects were mostly quasars, we would expect to obtain higher errors of the
Cqq, but agreement in amplitude and shape, as we are correcting for the shot noise which
depends on the objects density. We tested it in this particular pipeline, that using a random
sample of half quasars does provide the aforementioned effect. Figure 5.4 shows the effects
of choosing higher probability cuts for the magnitude cuts which chose for the tests. Each
pair of magnitude and probability cut gives different value of the shot noise, and we always
calculate the shot noise independently for each sample of interest. For the magnitudes r < 21
and r < 22, we obtain agreement in amplitude and shape of the power spectra, which means
that either the quasar sample is clean of any contaminants, or it is no longer possible to re-
move more stars based on the probability. It also means that number counts and parallax
analysis from the section 4.5 were enough to remove the star contaminant. For the magni-
tudes r < 23 and r < 23.5 we can see that the amplitude and shape changes, but remains the
same at above 99.8%, which is higher than the 98% suggested earlier. It shows that the auto-
correlation is sensitive to star contamination, and it is important to use the auto-correlation
as a catalog test at fainter magnitudes which include the problem of extrapolation. We chose
99.8% probability cut as the desired one for r < 23 and r < 23.5 magnitude cuts. Because
we still cannot be sure about possible star contamination, we also use cross-correlation with
CMB lensing in order to constraint the bias function of the quasars. In order to further test the
catalog’s purity, one can also measure cross-correlation between stars and quasars, or quasars
at different redshift ranges, as in both cases we would expect zero correlation if the quasar
catalog is free of any star contaminants. However, in this case we decide the performed tests
as enough to properly measure the auto-correlation power spectrum.

Table 5.1 includes the desired probability cuts, as well as median redshift and surface
density for those. For fainter magnitudes we obtain objects at higher median redshift, which



5.2. Bias constraints with the CMB lensing 57

Figure 5.5: Comparison of the cross-correlation with the CMB lensing for
different magnitude cuts and p(QSOcand) adapted to each magnitude limit

(see Table 5.1).

Table 5.1: The probability cuts as suggested by the auto-correlation, me-
dian photo-z and surface density, the resulting bias constrains in the form of

bq(z) = A(1 + z)2 + B, and the χ2 of the fit.

p(QSO) median photo-z density (deg−2) A B χ2(Cqκ)

r < 21 90% 1.58 73 0.49+0.05
−0.04 0.26+0.19

−0.33 159
r < 22 90% 1.71 157 0.62+0.03

−0.03 0.07+0.05
−0.13 282

r < 23 99.8% 1.96 95 0.57+0.03
−0.03 0.07+0.06

−0.13 336
r < 23.5 99.8% 2.10 116 0.84+0.02

−0.02 0.05+0.04
−0.08 624

also means higher bias, and we would expect different amplitudes of the auto-correlation at
different magnitude limits. Figure 5.4 compares the auto-correlation functions for the desired
probability cuts. We obtain signals for each of the magnitude limits, which we will use to fit
the theoretical models in the section 5.2. We can see that the fainter magnitudes give higher
amplitude, which is reasonable considering that those quasars reside at higher redshift and
have higher bias values.

5.2 Bias constraints with the CMB lensing

Figure 5.5 compares cross-correlation with the CMB lensing at different magnitude cuts. We
can see that the brighter magnitudes provide higher amplitude at larger scales, i.e. l < 500,
while higher quasar density available at fainter magnitudes allows to detect the signal at
smaller scales, i.e. l > 700.

We constrain bias of the quasar sample, by assuming the redshift distribution as given by
the photo-z, and using a bias model given by bq(z) = A(1 + z)2 + B. We use two degrees
of freedom, the A and B parameters, and cosmology fixed to the Planck Collaboration et
al., 2020a values. Figure 5.6 shows the resulting bias fits for different magnitude cuts in
comparison to the Sherwin et al., 2012. Out results at different magnitudes provide different



58 Chapter 5. Quasar correlation functions and bias constraints

Figure 5.6: The resulting bias fits at different magnitude cuts, in com-
parison to the results from the Sherwin et al., 2012, based on auto- and
cross-correlations between KiDS DR4 QSOs and CMB lensing map derived
from the Planck Collaboration et al., 2020b observations, fitted with the-
oretical models assuming the Planck cosmology (Planck Collaboration et
al., 2020a), photo-z redshift distributions, and bias functions modelled with

bq(z) = A(1 + z)2 + B.

amplitudes of the bias evolution. The quasar sample limited at r < 21 is in agreement with
the Sherwin et al., 2012, the sample at r < 23 is at about 1 sigma difference, and the sample
at r < 23 provides higher amplitude starting with z > 1.5. At redshift 0 we obtain bias lower
than 1, but it is not a problem since our quasar sample is limited to z > 0.5 and those redshifts
cannot be constrained with the given quasar catalog.

Table 5.1 shows the constraints of the A and B parameters, as well as the surface density
and median photo-z of the chosen magnitude and probability cuts. The subset at r < 23
provides lower surface density due to the higher probability cut. It is not a problem, as
the auto-correlation functions at r < 22 provide the same amplitude and shape at different
probability cuts, hence, the lower number of objects at r < 23 due to higher probability cut
applied also to data at r < 22 might increase the errors, but does not change the amplitude
or shape of the correlation functions. Despite the lower surface density, fainter magnitudes
probe higher redshifts which is shown with the median photo-z value. The sample limited at
r < 23.5 gives the highest bias evolution, which does not agree with the Sherwin et al., 2012.
At this magnitude range, it might be necessary to account for errors in the redshift distribution
based on the photo-zs. The χ2 of the Cqk increases with the magnitude, but at the r < 21 it
provides the highest detection of the signal, with 15 sigma significance, in comparison to, for
instance, 3.8σ reported by Sherwin et al., 2012. The final fits to the Cqq and Cqk are shown
in the Fig. 5.7.
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Figure 5.7: Auto- and cross-correlations between KiDS DR4 QSOs and
CMB lensing map derived from the Planck Collaboration et al., 2020b ob-
servations, fitted with a theoretical model assuming the Planck cosmology
(Planck Collaboration et al., 2020a), photo-z redshift distribution, and bias
modelled with bq(z) = A(1 + z)2 + B. The orange line shows the theoret-
ical power spectra from the MCMC. The green line marks the range of the

multipoles used to make the fit.
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6
Discussion

This chapter is based on the publications Nakoneczny et al., 2021; Nakoneczny et al., 2019.

6.1 Main findings

In this work, we employed supervised ML models to identify QSOs in KiDS DR3 and DR4,
and evaluate their redshifts in the case of DR4. In the conclusions, we focus on the catalog
from the KiDS DR4, which is the most sophisticated one. In there, we found 158k QSO
candidates with a minimum classification probability of p(QSOcand) > 0.9 at r < 22, and
a total of 311k QSO candidates with p(QSOcand) > 0.98 for r < 23.5, that is to say in the
extension to the close extrapolation data. The far extrapolation at r < 25 provides a total
of 507k QSO candidates at p(QSOcand) > 0.98. The catalog of QSOs is well designed
for extrapolation, with the reliability regions derived from visualizations, and probability
thresholds calibrated via a series of tests. Based on the SDSS QSO test sample, the purity
of the catalog is 96.9%, and completeness is 94.7% for r < 22. The extrapolation by ∼0.7
magnitude lowers the purity by 0.4 percentage points and the completeness by 3.9 percentage
points. The average redshift error in terms of (zphoto − zspec)/(1 + zspec) equals 0.009 ± 0.12
for r < 22, with its scatter increasing to −0.0001 ± 0.19 in the extrapolation (r < 23.5).
Additionally, we measured the quasar bias function, which equals bq(z) = 0.57+0.03

−0.03 (1 +

z)2 + 0.07+0.06
−0.13 , and at redshift z = 1.5 gives a value 3.63+0.25

−0.85 . Finally, we report 15σ
significance of the cross-correlation with the CMB lensing.

We found that the traditionally adopted testing method, based on randomly selected sam-
ples of objects, was insufficient to tune the bias versus variance trade-off. A faint-end test
is necessary for the proper extrapolation of both classification and redshifts, but also impor-
tant for appropriate tuning and inference on the bright end data. This approach towards ML
model calibration and the satisfactory extrapolation results are the main novelty aspects of
our work. Thanks to the faint extrapolation test, we also obtain useful redshift uncertainties
in the extrapolation data, even though we used the Gaussian output layer to model aleatoric
uncertainty. Otherwise, we would expect the aleatoric uncertainty to fail in the part of the
feature space not covered by the training data.

The addition of the near-IR VIKING bands, which were not available in the KiDS DR3,
provided crucial information for QSO redshifts and helped us to distinguish stars from QSOs
at redshifts of 2 < z < 3. The most important bands for QSO redshifts, according to our
experiments, are the near-IR ZKs, which are the two extreme bands covered by VIKING.
This suggests that it is the span of the infrared wavelengths that is relevant here. We found
it important to use both magnitude differences (colors) and magnitude ratios. Interestingly,
colors and ratios constructed from the same magnitude pairs had a different importance for
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the ML models. What is more, the ratios were in fact more common than colors among
the most important features used by XGBoost for classification and QSO redshifts. This
experimental analysis could be further perfected with proper fine tuning of the models trained
using a no-ratio feature set in order to draw the final conclusions. Additionally, possible
further experiments may involve more custom feature engineering based on flux values in
order to find the most robust photometric features.

The comparison of ML models also shows clear trends: XGB performs better at classi-
fication, while ANN provides a better redshift estimation, that is to say it works better for
regression. Many astronomical papers report no such differences, which was also the case in
our approach to the KiDS DR3. We uncovered these differences as more features are available
from the VIKING imaging, which allowed us to obtain better results with more sophisticated
classification models such as XGB. The superiority of ANN for regression is largely due to
its better performance in extrapolation, not only in feature space, but also in higher values of
the estimated photo-zs. The models tuned for both random and faint extrapolation tests are
also less overfitted and show real differences between their characteristics.

We successfully supported our analysis with t-SNE projections of high-dimensional space
onto 2D, instead of the standard color-color plots. The visualizations helped us to derive a
reliable inference subset at close extrapolation, which was possible by verifying the loca-
tion of these extrapolation data with respect to the feature space known from spectroscopic
classification. We also used the projections to test different feature sets. The distribution of
spectroscopic classes on the t-SNE plots allowed us to initially assess the reliability of feature
engineering, without even training a supervised model. Last but not least, the visualizations
helped us understand where the classification fails due to overlapping distributions between
various object classes in the feature space.

We release the catalogs publicly at
http://kids.strw.leidenuniv.nl/DR3/quasarcatalog.php (DR4) and
http://kids.strw.leidenuniv.nl/DR3/quasarcatalog.php (DR3).
Description of the data format is provided in the webpages. The code, written in Python and
Jupyter Notebook, is shared publicly at https://github.com/snakoneczny/kids-quasars.

6.2 Relation to other work

Most of the QSO classification and redshift estimation studies are not directly comparable
due to the results depending on available bands, survey brightness, size of the training sam-
ple, and different definitions or detection schemes of AGNs and QSOs in spectroscopy and
photometry. To ensure both high purity and completeness using color-color cuts, one has to
model the data with many distributions or build a set of decision boundaries (e.g., Richards
et al., 2002). On the other hand, ML allows us to build the most complicated decision bound-
aries in an automatic way, while simultaneously optimizing both purity and completeness.
The power of ML approaches comes with the danger of possible overfitting. This problem is
usually not addressed in the ML analyses, and the results on faint end data, which are most
affected by overfitting, are rarely reported (e.g., Hausen and Robertson, 2020). As far as
we know, our results for data fainter by one magnitude than the reach of the training data –
completeness lower by 3% and redshift scatter increased by 0.07 in comparison to the regime
covered by the training – are reported for the first time. This outcome challenges the way
that ML models are usually optimized and applied on the faint data end. For other problems,
other data characteristics can be used to obtain extrapolation tests, for example, the high and
low mass end for galaxy cluster mass estimation, the number of objects in n-body problems,
cosmological parameters not available during training in cosmological problems, etc.

http://kids.strw.leidenuniv.nl/DR3/quasarcatalog.php
http://kids.strw.leidenuniv.nl/DR3/quasarcatalog.php
https://github.com/snakoneczny/kids-quasars
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Our work is the first in which the simultaneous selection of QSOs from photometry
and evaluation of their photometric redshifts is performed for samples selected from the
KiDS+VIKING catalog. In a recent study, Logan and Fotopoulou (2020, p. L20) performed
a classification and redshift estimation in KiDS DR4, but on a smaller subset of 2.7M ob-
jects selected over 200 deg2 with the additional requirement of available detections in the
WISE mid-IR bands. That classification was done with unsupervised hierarchical density-
based spatial clustering of applications with noise (HDBSCAN, McInnes, Healy, and Astels,
2017), redshift estimation with RF, and feature engineering with principal component analy-
sis (PCA, Pearson, 1901). A quantitative comparison of our catalogs with respect to exper-
imental results on SDSS data is not possible due to different train and validation strategies.
We have, however, performed a qualitative comparison using the full training data from the
L20 catalog. The classification results are different as L20 uses an unsupervised algorithm,
which does not allow for a completeness that is as high as our supervised approach. We find
our photo-zs to be more precise on average, but L20 photo-zs are more robust at the faint
end.

In the study for KiDS DR3, we employed the RF algorithm and reported 91% purity and
87% completeness for QSOs. In the approach to the KiDS DR4, most of the improvement in
classification comes from adding the NIR bands, which allowed us to correctly classify QSO
at 2.5 < z < 3, where they are similar to stars in the ugri broad-bands. Additionally, two
significant improvements were made: we provide QSO photometric redshifts, and publish
estimations for objects fainter than the training data, with models tuned for extrapolation.

Another related work is the KiDS Strongly lensed QUAsar Detection project (KiDS-
SQuaD; Spiniello et al., 2018; Khramtsov et al., 2019), aimed at finding strongly gravitation-
ally lensed quasars in the KiDS data. This latter paper in particular describes the KiDS Bright
EXtraGalactic Objects catalog (KiDS-BEXGO), constructed from DR4 and including about
200k sources identified as QSOs based on an application of the CatBoost gradient boosting
ensemble algorithm (Prokhorenkova et al., 2018). The BEXGO catalog is optimized for the
lowest possible star contamination at a cost of reduced completeness, and it is limited to
r < 22. The results of an ML QSO identification are not directly comparable between our
work and that of Khramtsov et al., 2019, as in the latter the QSOs are defined as point-like
objects, and any AGNs with a visible galaxy host had been removed from the training data,
unlike in our case. We have kept QSOs, which appear extended in our training data, as such
sources provide useful information on the relation between QSOs and galaxies at low red-
shifts. It might have a vital outcome on the final predictions and possibly makes both catalogs
different.

Furthermore, the dataset constructed by Khramtsov et al., 2019 is aimed to carry out
the specific purpose of QSO strong lensing, which requires the highest possible purity of
the catalog. The approach that we have taken, on the other hand, is to obtain the most
optimal purity-completeness trade-off, which requires ML models to be properly tuned to the
given problem and data. A required level of purity or completeness can then be acquired a
posteriori by properly calibrating the catalog, in particular by applying appropriate cuts on
the probability that a given source is a QSO.

In this work, we trained the ML models to perform a full three-class classification on
both extended and point-like objects. If instead one was not interested in AGNs with resolved
galaxy hosts, but only point-like QSOs at higher redshifts, then based on the finding of our
work, we suggest to train the ML classifier only on point-like objects – for example, those
with the stellarity index higher than 0.8 – and apply only QSO versus star classification. Such
a model is easier to train and interpret, and visualizations of the relevant data are simpler to
understand than in the full three-class problem including both extended and point sources.

Since the publication, the catalogs have been used in various applications, including QSO
target selection in SDSS DR17 (Abdurro’uf et al., 2022), training and validating classification
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models (Logan and Fotopoulou, 2020; Falocco, Carrera, and Larsson, 2022), testing QSO
contamination (Bilicki et al., 2021; Stringer et al., 2021), and supporting feature selection
decisions (Carvajal et al., 2021; Chan et al., 2022; Li et al., 2022).

We envisage that our catalog of QSOs can have versatile applications in studies related
to AGNs or LSS, as it is optimized solely for QSO identification without outside require-
ments. The availability of robust photometric redshifts with uncertainty estimates for the
QSOs contained in our catalog is expected to prove especially useful in approaches where
“tomographic” dissection of the LSS is done, such as cross-correlations with various back-
grounds.

Laurent et al., 2017 uses spectroscopic quasar from the SDSS-IV eBOSS over redshift
range 0.9 to 2.2, and analyse their clustering. They report a precise bias value of 2.45 ± 0.05
at redshift z = 1.55. Sherwin et al., 2012 uses photometric quasars from the SDSS DR8
over redshift range of 0.5 to 3.5, in cross-correlation with the CMB lensing, and report the
bias value of 2.5 ± 0.6 at z = 1.4, and obtain 3.8σ detection of the cross-correlation. In
comparison, we analyse a redshift range spanning from 0.5 to 3.5, and report bias value
3.63+0.25

−0.85 at z = 1.5, and 15σ significance of the CMB lensing cross-correlation.

6.3 Limitations and possible improvements

We consider our approach towards the inference at the faint data end, which involves tuning
the model based on a faint extrapolation test, as the most optimal as far as the current super-
vised ML models are concerned. However, a reliable test of our predictions outside of the
magnitude coverage of spectroscopic samples is not possible, and at present KiDS does not
overlap with any wide-angle samples providing sufficient numbers of spectroscopic QSOs
beyond r > 22. This situation will likely improve in the coming years thanks to the already
ongoing DESI (DESI Collaboration et al., 2016) and planned 4MOST (de Jong et al., 2019)
QSO surveys, which will largely overlap with KiDS.

The random and faint extrapolation tests require an interpretation, which depends on the
problem complexity and robustness of the inference at the faint end. When determining the
appropriate value of a given model parameter, for example the number of epochs or trees,
one might obtain ambiguous results, such as a range of acceptable values rather than one best
value. This adds to the complexity of model optimization. The results on faint end extrapo-
lation are reported to have a high impact on the estimation reliability (e.g., Shu et al., 2019;
Clarke et al., 2020; Logan and Fotopoulou, 2020). We achieved satisfactory extrapolation
results in r < 23.5, which is 1.5 magnitude larger than the SDSS limit. Our results are robust,
because we not only find a limit at which the results diverge from expectations, but also make
sure that the results are adequate for data brighter than this limit, r < 23.5 in our case.

The biggest source of incompleteness in our catalog comes from removing objects with
at least one band missing out of the nine available. This decreases the size of the KiDS
inference data by 55%, from 100 million to 45 million. The requirement of u-band detections
may lower the completeness of QSOs at z ≳ 2. When looking for such high-z QSOs, one
would have to perform a classification and redshift estimation using only the redder bands.
The possible addition of red QSOs to the training may result in a higher QSO density at high
redshifts, at the cost of limiting the feature space.

Another source of incompleteness is the removal of 13 million of the faintest objects
for which the SExtractor morphological classifier CLASS_STAR fails. At r > 23.5, the
unsafe subset constitutes a large fraction of all KiDS objects (65%) and dominates at r > 24
(81%) (Fig. 2.6). As the stellarity index is in fact one of the most important features for
the classification (Fig. 4.2), its inaccuracy at the faint data end may account for the limit of
reliable extrapolation, which is r < 23.5.
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We plan several steps in order to further increase the catalog’s completeness and inter-
pretability. The missing data problem can be solved with either straightforward methods,
such as assigning some specific values to the missing features, for example, zeros or mean
values, or more sophisticated approaches such as predicting the missing values or using mod-
els designed to work with missing features (e.g., Śmieja et al., 2018). It might also prove
necessary to skip the shape classifiers for the faint end estimations. The redshift uncertain-
ties require epistemic uncertainty modeling in order to be fully useful in the extrapolation
range of r > 22. This can be implemented in ANN with, for example, variational layers of
Tensorflow, which represent each weight as a probability distribution.

It is possible to validate the faint-end predictions by fitting an SED to the QSO candi-
dates in the catalog, using the estimated photo-zs as input to SED fitting. This will allow us
to physically interpret the predictions and find the physical reasons for some of the model
failures. Furthermore, this could be the best way of validating the estimations at the faint
magnitude end by evaluating how physically acceptable the QSO SED fits are.

Dedicated spectroscopic observations might be yet another way of validating the estima-
tions at extrapolation. They would allow us to determine more precisely the limit of reliability
of our predictions at r ≈ 23.5. It would be interesting to also probe the faintest objects to
understand how the estimations cover the unsafe inference subset and find what is the actual
portion of real QSOs in our selection in the faintest end. If the results are positive enough, this
would show that the ML models optimized for the extrapolation can also serve as a method
of candidate selection for follow-up spectroscopy in such faint data.

The correlation analysis might be extended by addressing systematics resulting from the
observations and ML processing of the KiDS data, accounting for photo-z errors from the
uncertainties obtained the with ANN, using tomographic approach based on the photo-z bin-
ning, measuring correlation between the catalog and stars, and, finally, constraining the cos-
mology itself. In this early study, however, we are mostly interested in providing the most
reliable catalog of quasars, tested throughly with different methods.

6.4 Conclusion

In this work we have shown how artificial intelligence can be successfully used to process
large amounts of astronomical data. The wide-angle KiDS DR4 catalog of 253k QSO can-
didates with reliable photometric redshifts can be used in both AGN and LSS studies, as
shown here by estimating the bias function, and our work addresses important aspects for
any other application of ML in astronomy. As we have demonstrated, well-designed infer-
ence models can be pushed to the limits and give reliable results even beyond the coverage
of the training sets. The interested readers can test the approach of validation on the faint
data proposed in this work in their own inference schemes, and compare what differences it
brings to parameter optimization. This work, and ML processing in general, is important in
a view of the upcoming large surveys such as the Rubin Observatory LSST or Euclid. Those
new endeavors will provide unprecedented vast amounts of data much fainter than the current
spectroscopic surveys, and also going deeper than most of the current wide-angle imaging
datasets, which will require robust big data processing. Carefully designed, intepretable,
and well-tested ML models can provide reliable and trustworthy results. We believe that the
framework developed here is one step towards meeting the demands of these future missions.
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